Advertisement

Ontology Aided Query Expansion for Retrieving Relevant Texts

  • Lipika Dey
  • Shailendra Singh
  • Romi Rai
  • Saurabh Gupta
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3528)

Abstract

Knowledge based approaches to text information retrieval are aimed at increasing the precision of retrieval. In this paper we show that query enhancement through the use of domain ontological structures can enhance the quality of retrieval to a large extent. We have presented a formal framework for extending user queries with domain ontological structures. The query-expansion mechanism has been implemented as a client-side query processor which can use any efficient search engine like Google or Alta Vista at the back end. The approach offers substantial performance gains. We have established the effectiveness of the approach experimentally through the use of single and multiple ontologies.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berners-Lee, T., Hendler, J., Lassila., O.: The Semantic Web. Scientific American 284(5), 34–43 (2001)CrossRefGoogle Scholar
  2. 2.
    Castano, S., Ferrara, A., Montanelli., S.: H-MATCH: an Algorithm for Dynamically Matching Ontologies in Peer-based Systems (2003), http://www.cs.uic.edu/~ifc/SWDB/papers/Castano_etal.pdf
  3. 3.
    Fellbaum, C.: WordNet: An Electronic Lexical Database.The MIT Press, Cambridge (1998)Google Scholar
  4. 4.
    Gonzalo, J., Verdejo, F., Chugur, I., Cigarr’an, J.: Indexing with WordNet synsets can improve text retrieval. In: Proceedings of the COLING/ACL 1998 Workshop on Usage of WordNet for NLP (1998)Google Scholar
  5. 5.
    Katz, B., Lin., J.: Annotating the Semantic Web Using Natural Language. In: Proceedings of 2nd Workshop on NLP and XML, COLING 2002, Taipei, Taiwan (2002)Google Scholar
  6. 6.
    Katz, B., Lin, J., Loreto, D., Hldebrandt., W.: Integrating Web-based and Corpus-based Techniques for Question Answering. In: Proceedings of Twelfth Text Retrieval Conference (TREC 2003) (November 2003)Google Scholar
  7. 7.
    Magnini, B., Serafini, L., Speranza., M.: Linguistic Based Matching of Local Ontologies. In: American Association for Artificial Intelligence (2002)Google Scholar
  8. 8.
    Mena, E., Kashyap, V., Illarramendi, A., Sheth, A.: Estimating Information Loss for Multi-Ontology based Query Processing. In: Proceedings of the Second and Interdisciplinary Workshop on Intelligent Information Integration in conjunction with European Conference on Artificial Intelligence, Brighton, UK (August 1998)Google Scholar
  9. 9.
    Vorhees, E.: Using WordNet to disambiguate Word Senses for Text retrieval. In: ACMSIGIR, Pittsbourgh, PA (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Lipika Dey
    • 1
  • Shailendra Singh
    • 2
  • Romi Rai
    • 1
  • Saurabh Gupta
    • 1
  1. 1.Department of MathematicsIIT DelhiDelhiIndia
  2. 2.Samsung India Software CenterSIELNoidaIndia

Personalised recommendations