Advertisement

The ProM Framework: A New Era in Process Mining Tool Support

  • B. F. van Dongen
  • A. K. A. de Medeiros
  • H. M. W. Verbeek
  • A. J. M. M. Weijters
  • W. M. P. van der Aalst
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3536)

Abstract

Under the umbrella of buzzwords such as “Business Activity Monitoring” (BAM) and “Business Process Intelligence” (BPI) both academic (e.g., EMiT, Little Thumb, InWoLvE, Process Miner, and MinSoN) and commercial tools (e.g., ARIS PPM, HP BPI, and ILOG JViews) have been developed. The goal of these tools is to extract knowledge from event logs (e.g., transaction logs in an ERP system or audit trails in a WFM system), i.e., to do process mining. Unfortunately, tools use different formats for reading/storing log files and present their results in different ways. This makes it difficult to use different tools on the same data set and to compare the mining results. Furthermore, some of these tools implement concepts that can be very useful in the other tools but it is often difficult to combine tools. As a result, researchers working on new process mining techniques are forced to build a mining infrastructure from scratch or test their techniques in an isolated way, disconnected from any practical applications. To overcome these kind of problems, we have developed the ProM framework, i.e., an “pluggable” environment for process mining. The framework is flexible with respect to the input and output format, and is also open enough to allow for the easy reuse of code during the implementation of new process mining ideas. This paper introduces the ProM framework and gives an overview of the plug-ins that have been developed.

Keywords

Linear Temporal Logic Mining Result Process Perspective Transactional Model Linear Temporal Logic Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    van der Aalst, W.M.P., van Dongen, B.F.: Discovering Workflow Performance Models from Timed Logs. In: Han, Y., Tai, S., Wikarski, D. (eds.) EDCIS 2002. LNCS, vol. 2480, pp. 45–63. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    van der Aalst, W.M.P., Song, M.: Mining Social Networks: Uncovering interaction patterns in business processes. In: Desel, J., Pernici, B., Weske, M. (eds.) BPM 2004. LNCS, vol. 3080, pp. 244–260. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G., Weijters, A.J.M.M.: Workflow Mining: A Survey of Issues and Approaches. Data and Knowledge Engineering 47(2), 237–267 (2003)CrossRefGoogle Scholar
  4. 4.
    van der Aalst, W.M.P., Weijters, A.J.M.M. (eds.): Process Mining, Special Issue of Computers in Industry, vol. 53(3). Elsevier Science Publishers, Amsterdam (2004)Google Scholar
  5. 5.
    van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow Mining: Discovering Process Models from Event Logs. IEEE Transactions on Knowledge and Data Engineering 16(9), 1128–1142 (2004)CrossRefGoogle Scholar
  6. 6.
    Agrawal, R., Gunopulos, D., Leymann, F.: Mining Process Models from Workflow Logs. In: Sixth International Conference on Extending Database Technology, pp. 469–483 (1998)Google Scholar
  7. 7.
    Billington, J., et al.: The Petri Net Markup Language: Concepts, Technology, and Tools. In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003. LNCS, vol. 2679, pp. 483–505. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Cook, J.E., Wolf, A.L.: Discovering Models of Software Processes from Event-Based Data. ACM Transactions on Software Engineering and Methodology 7(3), 215–249 (1998)CrossRefGoogle Scholar
  9. 9.
    Grigori, D., Casati, F., Dayal, U., Shan, M.C.: Improving Business Process Quality through Exception Understanding, Prediction, and Prevention. In: Apers, P., Atzeni, P., Ceri, S., Paraboschi, S., Ramamohanarao, K., Snodgrass, R. (eds.) Proceedings of 27th International Conference on Very Large Data Bases (VLDB 2001), pp. 159–168. Morgan Kaufmann, San Francisco (2001)Google Scholar
  10. 10.
    Herbst, J.: A Machine Learning Approach to Workflow Management. In: Lopez de Mantaras, R., Plaza, E. (eds.) ECML 2000. LNCS (LNAI), vol. 1810, pp. 183–194. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    IDS Scheer. ARIS Process Performance Manager (ARIS PPM): Measure, Analyze and Optimize Your Business Process Performance (whitepaper). IDS Scheer, Saarbruecken, Gemany (2002), http://www.ids-scheer.com
  12. 12.
    Keller, G., Teufel, T.: SAP R/3 Process Oriented Implementation. Addison-Wesley, Reading (1998)Google Scholar
  13. 13.
    de Medeiros, A.K.A., Weijters, A.J.M.M., van der Aalst, W.M.P.: Using Genetic Algorithms to Mine Process Models: Representation, Operators and Results. BETA Working Paper Series, WP 124, Eindhoven University of Technology, Eindhoven (2004)Google Scholar
  14. 14.
    zur Mühlen, M., Rosemann, M.: Workflow-based Process Monitoring and Controlling - Technical and Organizational Issues. In: Sprague, R. (ed.) Proceedings of the 33rd Hawaii International Conference on System Science (HICSS-33), pp. 1–10. IEEE Computer Society Press, Los Alamitos (2000)Google Scholar
  15. 15.
    Reisig, W., Rozenberg, G. (eds.): APN 1998. LNCS, vol. 1491. Springer, Heidelberg (1998)zbMATHGoogle Scholar
  16. 16.
    Staffware. Staffware Process Monitor, SPM (2002), http://www.staffware.com
  17. 17.
    Weijters, A.J.M.M., van der Aalst, W.M.P.: Rediscovering Workflow Models from Event-Based Data using Little Thumb. Integrated Computer-Aided Engineering 10(2), 151–162 (2003)Google Scholar
  18. 18.
    Wen, L., Wang, J., van der Aalst, W.M.P., Wang, Z., Sun, J.: A Novel Approach for Process Mining Based on Event Types. In: BETA Working Paper Series, WP 118. Eindhoven University of Technology, Eindhoven (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • B. F. van Dongen
    • 1
  • A. K. A. de Medeiros
    • 1
  • H. M. W. Verbeek
    • 1
  • A. J. M. M. Weijters
    • 1
  • W. M. P. van der Aalst
    • 1
  1. 1.Department of Technology ManagementEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations