Advertisement

Soundness of Resource-Constrained Workflow Nets

  • Kees van Hee
  • Alexander Serebrenik
  • Natalia Sidorova
  • Marc Voorhoeve
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3536)

Abstract

We study concurrent processes modelled as workflow Petri nets extended with resource constraints. We define a behavioural correctness criterion called soundness: given a sufficient initial number of resources, all cases in the net are guaranteed to terminate successfully, no matter which schedule is used. We give a necessary and sufficient condition for soundness and an algorithm that checks it.

Keywords

Petri nets concurrency workflow resources verification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    van der Aalst, W.M.P.: Verification of workflow nets. In: Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248. Springer, Heidelberg (1997)Google Scholar
  2. 2.
    van der Aalst, W.M.P.: The Application of Petri Nets to Workflow Management. The Journal of Circuits, Systems and Computers 8(1), 21–66 (1998)CrossRefGoogle Scholar
  3. 3.
    van der Aalst, W.M.P.: Workflow verification: Finding control-flow errors using Petri-net-based techniques. In: van der Aalst, W.M.P., Desel, J., Oberweis, A. (eds.) Business Process Management. LNCS, vol. 1806, pp. 161–183. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    van der Aalst, W.M.P., van Hee, K.M.: Workflow Management: Models, Methods, and Systems. MIT Press, Cambridge (2002)Google Scholar
  5. 5.
    Barkaoui, K., Petrucci, L.: Structural analysis of workflow nets with shared resources. In: Workflow management: Net-based Concepts, Models, Techniques and Tools (WFM 1998). Computing science reports, vol. 98/7, pp. 82–95. Eindhoven University of Technology (1998)Google Scholar
  6. 6.
    Colom, J.: The resource allocation problem in flexible manufacturing systems. In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003. LNCS, vol. 2679, pp. 23–35. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT Press, Cambridge (1990)zbMATHGoogle Scholar
  8. 8.
    Dijkstra, E.W.: Ewd 623. Selected writings on computing: a personal perspective (1982)Google Scholar
  9. 9.
    Ezpeleta, J.: Flexible manufacturing systems. In: Girault, C., Valk, R. (eds.) Petri nets for systems engineering. Springer, Heidelberg (2003)Google Scholar
  10. 10.
    Ezpeleta, J., Colom, J.M., Martínez, J.: A Petri net based deadlock prevention policy for flexible manufacturing systems. IEEE Transactions on Robotics and Automation 11(2), 173–184 (1995)CrossRefGoogle Scholar
  11. 11.
    van Hee, K., Sidorova, N., Voorhoeve, M.: Soundness and separability of workflow nets in the stepwise refinement approach. In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003. LNCS, vol. 2679, pp. 337–356. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Lautenbach, K.: Liveness in Petri Nets. Internal Report of the Gesellschaft für Mathematik und Datenverarbeitung, Bonn, Germany, ISF/75-02-1 (1975)Google Scholar
  13. 13.
    Silva, M., Teruel, E.: Petri nets for the design and operation of manufacturing systems. European Journal of Control 3(3), 182–199 (1997)zbMATHGoogle Scholar
  14. 14.
    Silva, M., Valette, R.: Petri nets and flexible manufacturing. In: Rozenberg, G. (ed.) APN 1989. LNCS, vol. 424, pp. 374–417. Springer, Heidelberg (1990)Google Scholar
  15. 15.
    Takaoka, T.: Subcubic cost algorithms for the all pairs shortest path problem. Algorithmica 3(20), 309–318 (1998)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Zwick, U.: Exact and approximate distances in graphs - A survey. In: Meyer auf der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 33–48. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Kees van Hee
    • 1
  • Alexander Serebrenik
    • 1
  • Natalia Sidorova
    • 1
  • Marc Voorhoeve
    • 1
  1. 1.Department of Mathematics and Computer ScienceEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations