Exploiting Class Hierarchies for Knowledge Transfer in Hyperspectral Data

  • Suju Rajan
  • Joydeep Ghosh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3541)

Abstract

Obtaining ground truth for hyperspectral data is an expensive task. In addition, a number of factors cause the spectral signatures of the same class to vary with location and/or time. Therefore, adapting a classifier designed from available labeled data to classify new hyperspectral images is difficult, but invaluable to the remote sensing community. In this paper, we use the Binary Hierarchical Classifier to propose a knowledge transfer framework that leverages the information gathered from existing labeled data to classify the data obtained from a spatially separate test area. Experimental results show that in the absence of any labeled data in the new area, our approach is better than a direct application of the old classifier on the new data. Moreover, when small amounts of labeled data are available from the new area, our framework offers further improvements through semi-supervised learning mechanisms.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blum, A.: On-line algorithms in machine learning. In: Fiat, A. (ed.) Dagstuhl Seminar 1996. LNCS, vol. 1442. Springer, Heidelberg (1998)Google Scholar
  2. 2.
    Bruzzone, L., Prieto, D.F.: Unsupervised retraining of a maximum likelihood classifier for the analysis of multitemporal remote sensing images. IEEE Trans. Geoscience and Remote Sensing 39, 456–460 (2001)CrossRefGoogle Scholar
  3. 3.
    Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via error-correcting output codes. Journal of Artificial Intelligence Research 2, 263–286 (1995)MATHGoogle Scholar
  4. 4.
    Ham, J., Chen, Y., Crawford, M.M., Ghosh, J.: Investigation of the Random Forest Framework for Classification of Hyperspectral Data. IEEE Trans. Geoscience and Remote Sensing (2005) (page to appear)Google Scholar
  5. 5.
    Joachims, T.: Making large-scale SVM learning practical. In: Burges, C., Scholkopf, B., Smola, A. (eds.) Advances in Kernel Methods: Support Vector Learning, pp. 169–184. MIT Press, Cambridge (1999)Google Scholar
  6. 6.
    Kelly, M.G., Hand, D.J., Adams, M.N.: The impact of changing populations on classifier performance. In: The Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 67–371 (1999)Google Scholar
  7. 7.
    Kumar, S., Ghosh, J., Crawford, M.M.: Best-Bases Feature Extraction algorithms for classification of hyperspectral data. IEEE Trans. Geoscience and Remote Sensing 39(7), 1368–1379 (2001)CrossRefGoogle Scholar
  8. 8.
    Kumar, S., Ghosh, J., Crawford, M.M.: Hierarchical fusion of multiple classifiers for hyperspectral data analysis. Pattern Analysis and Applications, spl. Issue on Fusion of Multiple Classifiers 5(2), 210–220 (2002)MATHMathSciNetGoogle Scholar
  9. 9.
    Kuncheva, L.I.: Classifier ensembles for changing environments. In: Roli, F., Kittler, J., Windeatt, T. (eds.) MCS 2004. LNCS, vol. 3077, pp. 1–15. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Kuncheva, L.I., Whitaker, C.J.: Measures of diversity in classifier ensembles. Machine Learning 51, 181–207 (2003)MATHCrossRefGoogle Scholar
  11. 11.
    Littlestone, N., Warmuth, M.K.: The weighted majority algorithm. Information and Computation 108, 212–261 (1994)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Morgan, J.T.: Adaptive Hierarchical Classifier with Limited Training Data. PhD thesis, Dept. of Mech. Eng., Univ. of Texas at Austin (2002)Google Scholar
  13. 13.
    Morgan, J.T., Henneguelle, A., Ham, J., Crawford, M.M., Ghosh, J.: Adaptive feature spaces for land cover classification with limited ground truth data. International Journal of Pattern Recognition and Artificial Intelligence (IJPRAI) 18, 777–800 (2004)CrossRefGoogle Scholar
  14. 14.
    Nigam, K., Mccallum, A.K., Thrun, S., Mitchell, T.: Text classification from labeled and unlabeled documents using EM. Machine Learning 39(2/3), 103–134 (2000)MATHCrossRefGoogle Scholar
  15. 15.
    Rajan, S., Ghosh, J.: An empirical comparison of hierarchical vs. two-level approaches to multiclass problems. In: Roli, F., Kittler, J., Windeatt, T. (eds.) MCS 2004. LNCS, vol. 3077, pp. 283–292. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Shahshahani, B.M., Landgrebe, D.A.: The effect of unlabeled samples in reducing the small sample size problem and mitigating the hughes phenomenon. IEEE Trans. Geoscience and Remote Sensing 32, 1087–1095 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Suju Rajan
    • 1
  • Joydeep Ghosh
    • 1
  1. 1.Dept. of Electrical and Computer EngineeringUniversity of Texas at AustinAustinUSA

Personalised recommendations