Speaker Verification Using Adapted User-Dependent Multilevel Fusion

  • Julian Fierrez-Aguilar
  • Daniel Garcia-Romero
  • Javier Ortega-Garcia
  • Joaquin Gonzalez-Rodriguez
Conference paper

DOI: 10.1007/11494683_36

Part of the Lecture Notes in Computer Science book series (LNCS, volume 3541)
Cite this paper as:
Fierrez-Aguilar J., Garcia-Romero D., Ortega-Garcia J., Gonzalez-Rodriguez J. (2005) Speaker Verification Using Adapted User-Dependent Multilevel Fusion. In: Oza N.C., Polikar R., Kittler J., Roli F. (eds) Multiple Classifier Systems. MCS 2005. Lecture Notes in Computer Science, vol 3541. Springer, Berlin, Heidelberg

Abstract

In this paper we study the application of user-dependent score fusion to multilevel speaker recognition. After reviewing related works in multimodal biometric authentication, a new score fusion technique is described. The method is based on a form of Bayesian adaptation to derive the personalized fusion functions from prior user-independent data. Experimental results are reported using the MIT Lincoln Laboratory’s multilevel speaker verification system. It is experimentally shown that the proposed adapted fusion method outperforms both user independent and non-adapted user-dependent fusion approaches.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Julian Fierrez-Aguilar
    • 1
  • Daniel Garcia-Romero
    • 1
  • Javier Ortega-Garcia
    • 1
  • Joaquin Gonzalez-Rodriguez
    • 1
  1. 1.Biometrics Research Lab./ATVS, Escuela Politecnica SuperiorUniversidad Autonoma de MadridMadridSpain

Personalised recommendations