Data Partitioning Evaluation Measures for Classifier Ensembles

  • Rozita A. Dara
  • Masoud Makrehchi
  • Mohamed S. Kamel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3541)


Training data modification has shown to be a successful technique for the design of classifier ensemble. Current study is concerned with the analysis of different types of training set distribution and their impact on the generalization capability of multiple classifier systems. To provide a comparative study, several probabilistic measures have been proposed to assess data partitions with different characteristics and distributions. Based on these measures, a large number of disjoint training partitions were generated and used to construct classifier ensembles. Empirical assessment of the resulted ensembles and their performances have provided insights into the selection of appropriate evaluation measures as well as construction of efficient population of partitions.


Training Data Mahalanobis Distance Classifier Ensemble Training Subset Bhattacharyya Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Multiple Classifiers Systems. In: Roli, F., Kittler, J., Windeatt, T. (eds.) MCS 2004. LNCS, vol. 3077, pp. 233–242. Springer, Heidelberg (2004)Google Scholar
  2. 2.
    Multiple Classifiers Systems. In: Windeatt, T., Roli, F. (eds.) MCS 2003. LNCS, vol. 2709. Springer, Heidelberg (2003)Google Scholar
  3. 3.
    Kuncheva, L.: Combining Pattern Classifiers: Methods and Algorithms. Wiley, Chichester (2004)zbMATHCrossRefGoogle Scholar
  4. 4.
    Sharkey, A.: Types of Multinet Systems. In: Roli, F., Kittler, J. (eds.) MCS 2002. LNCS, vol. 2364, pp. 108–117. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Tumer, K., Oza, N.: Input Decimated Ensembles. Pattern Analysis and Applications 6(1), 65–77 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Freund, Y., Schapire, R.: Experiments with a New Boosting Algorithm. In: Proc. of the 13th Int. Conf. on Machine Learning, Bari Italy, pp. 148–156 (1996)Google Scholar
  7. 7.
    Breiman, L.: Bagging Predictors. Machine Learning 24(2), 123–140 (1996)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Dara, R., Kamel, M.: Effect of Sharing Training Patterns on the Performance of Classifier Ensemble. In: Proc. of Int. IEEE Conf. on System Man Cybernetics, The Hague, The Netherlands, pp. 1220–1225 (2004)Google Scholar
  9. 9.
    Chawla, N., Moore, T., Hall, L., Bowyer, L., Kegelmeyer, P., Springer, C.: Distributed Learning with Bagging-like Performance. Pattern Recognition Letters 24, 455–471 (2003)CrossRefGoogle Scholar
  10. 10.
    Blum, A., Langley, P.: Selection of Relevant Features and Examples in Machine Learning. Artificial Intellignce 97(1-2), 245–271 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Kamel, M., Wanas, N.: Data Dependence in Combining Classifiers. In: Fourth Int. Workshop on MCS, Guilford UK, pp. 1–14 (2003)Google Scholar
  12. 12.
    Jiang, W., Tanner, M.: Hierarchical Mixtures of Experts for Generalized Linear Models. Neural Computation 11, 1183–1198 (1999)CrossRefGoogle Scholar
  13. 13.
    Parikh, D., Kim, M., Oagaro, J., Mandayam, S., Polikar, R.: Combining classifiers for multisensor data fusion. In: Proc. of Int. IEEE Conf. on System Man Cybernetics, The Hague, The Netherlands, pp. 1232–1237 (2004)Google Scholar
  14. 14.
    Frosyniotis, D., Stafylopatis, A., Likas, A.: A Divide-and-Conquer Method for Mutli-Net Classifiers. Pattern Analysis and Applications 6, 32–40 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Dara, R., Makrehchi, M., Kamel, M.: An Information-Theoretic Measure to Evaluate Data Partitions in Multiple Classifiers. In: Proc. of Int. IEEE Conf. on System Man Cybernetics, The Hague, The Netherlands, pp. 4826–4831 (2004)Google Scholar
  16. 16.
    Fukunaga, K.: Introduction to Statistical Pattern Recognition. Oxford University Press, Oxford (1990)zbMATHGoogle Scholar
  17. 17.
    Duda, R., Hart, P., Strok, D.: Pattern Recognition. John Wiley and Sons, Chichester (2000)Google Scholar
  18. 18.
    Blake, D., Merz, C.: UCI Repository of machine learning databases,

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Rozita A. Dara
    • 1
  • Masoud Makrehchi
    • 1
  • Mohamed S. Kamel
    • 1
  1. 1.Pattern Analysis and Machine Intelligence LaboratoryUniversity of WaterlooWaterlooCanada

Personalised recommendations