Complex Behaviours Through Modulation in Autonomous Robot Control

  • J. A. Becerra
  • F. Bellas
  • J. Santos
  • R. J. Duro
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3512)


Combining previous experience and knowledge to contemplate tasks of increasing complexity is one of the most interesting problems in autonomous robotics. Here we present an ANN based modular architecture that uses the concept of modulation to increase the possibilities of reusing previously obtained modules. A first approximation to the modulation of the actuators was tested in a previous paper where we showed how it was useful to obtain more complex behaviours that those obtained using only activation / inhibition. In this paper we extend the concept to sensor modulation, which enables the architecture to easily modify the required behaviour for a module, we show how both types of modulation can be used at the same time and how the activation / inhibition can be seen as a particular case of modulation. Some examples in a real robot illustrate the capabilities of the whole architecture.


Sensor Modulator Input Pattern Control Architecture Real Robot Direct Descendant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arbib, M.A.: Schema Theory. In: Shapiro, S. (ed.) The Encyclopedia of Artificial Intelligence, 2nd edn., pp. 1427–1443. Wiley, New York (1992)Google Scholar
  2. 2.
    Arkin, R.C.: Behavior Based Robotics. MIT Press, Cambridge (1998)Google Scholar
  3. 3.
    Becerra, J.A., Santos, J., Duro, R.J.: Multimodule Artificial Neural Network Architectures for Autonomous Robot Control Through Behavior Modulation. In: Mira, J., Álvarez, J.R. (eds.) IWANN 2003. LNCS, vol. 2687, pp. 169–176. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Brooks, R.A.: Achieving Artificial Intelligence through Building Robots, A.I. Memo 898, MIT, AI Lab (1986)Google Scholar
  5. 5.
    Colombetti, M., Dorigo, M., Borghi, G.: Behavior Analysis and Training - A Methodology for Behavior Engineering. IEEE Transactions on Systems, Man and Cybernetics 26(3), 365–380 (1996)CrossRefGoogle Scholar
  6. 6.
    Duro, R.J., Santos, J., Gómez, A.: Synaptic Modulation Based Artificial Neural Networks. In: Sandoval, F., Mira, J. (eds.) IWANN 1995. LNCS, vol. 930, pp. 31–36. Springer, Heidelberg (1995)Google Scholar
  7. 7.
    Duro, R.J., Santos, J., Becerra, J.A.: Evolving ANN Controllers for Smart Mobile Robots. In: Future Directions for Intelligent Systems and Information Sciences, pp. 34–64. Springer, Heidelberg (2000)Google Scholar
  8. 8.
    Husbands, P., Smith, T., O’Shea, M., Jakobi, N., Anderson, J., Philippides, A.: Brains, Gases and Robots. Perspectives Neural Comp. 2, 51–63 (1998)Google Scholar
  9. 9.
    Ishiguro, A., Otsu, K., Fujii, A., Uchikawa, Y.: Evolving an Adaptive Controller for a Legged-Robot with Dynamically-Rearranging Neural Networks. In: Meyer, J.-A., Berthoz, A., Floreano, D., Roitblat, H.L., Wilson, S.W. (eds.) Proc. Supp. 6th Int. Conf. on Simulation of Adaptive Behavior, pp. 235–244 (2000)Google Scholar
  10. 10.
    Marín, J., Solé, R.V.: Macroevolutionary Algorithms: A New Optimization Method on Fitness Landscapes. IEEE Transactions on Evolutionary Computation 3(4), 272–286 (1999)CrossRefGoogle Scholar
  11. 11.
    Meyer, J.-A., Doncieux, S., Filliat, D., Guillot, A.: Evolutionary Approaches to Neural Control of Rolling, Walking, Swimming and Flying Animats or Robots. In: Duro, R.J., Santos, J., Graña, M. (eds.) Biologically Inspired Robot Behavior Engineering, vol. 109, pp. 1–43. Physica-Verlag (2002)Google Scholar
  12. 12.
    Harvey, I.: Artificial Evolution and Real Robots. In: Sugisaka, M. (ed.) Proceedings of International Symposium on Artificial Life and Robotics (AROB), Beppu, Japan, pp. 138–141 (1996)Google Scholar
  13. 13.
    Urzelai, J., Floreano, D., Dorigo, M., Colombetti, M.: Incremental Robot Shaping. Connection Science Journal 10(384), 341–360 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • J. A. Becerra
    • 1
  • F. Bellas
    • 1
  • J. Santos
    • 1
  • R. J. Duro
    • 1
  1. 1.Grupo de Sistemas AutónomosUniversidade da CoruñaSpain

Personalised recommendations