Advertisement

Clustering-Based TSK Neuro-fuzzy Model for Function Approximation with Interpretable Sub-models

  • Luis Javier Herrera
  • Héctor Pomares
  • Ignacio Rojas
  • Alberto Guilén
  • Jesús González
  • Mohammed Awad
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3512)

Abstract

TSK models are a very powerful tool for function approximation problems given a dataset of input/output data. Given a global error function to approximate, there are several methodologies for training (adjust the parameters and find the optimal structure) the TSK model. Nevertheless, this strategy implies that the interpretability of the rules comprising the neuro-fuzzy TSK system as linearizations of the nonlinear subjacent system can be lost. Several recent works have addressed this problem with partial success, sometimes performing a tradeoff between global accuracy and local models interpretability. In this paper we propose an accurate modified TSK neuro-fuzzy model for function approximation that solves the cited problem, and that furthermore allows us to interprete the output of the rules as the Taylor Series Expansion of the system output around the rule centres.

Keywords

Fuzzy System Function Approximation Input Space Taylor Series Expansion Aggregation Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modelling and control. IEEE Trans. Syst. Man and Cyber. 15, 116–132 (1985)zbMATHGoogle Scholar
  2. 2.
    Johansen, T.A., Babuska, R.: Multiobjective Identification of Takagi-Sugeno Fuzzy Models. IEEE Trans. Fuz. Syst. 11(6), 847–860 (2003)CrossRefGoogle Scholar
  3. 3.
    Zhou, S.M., Gan, J.Q.: Improving the interpretability of Takagi-Sugeno fuzzy model by using linguistic modifiers and a multiple objective learning scheme. In: Int. Joint Conf. on Neural Networks IJCNN, pp. 2385–2390 (2004)Google Scholar
  4. 4.
    Bikdash, M.: A Highly Interpretable Form of Sugeno Inference Systems. IEEE Trans. Fuz. Syst. 7(6), 686–696 (1999)CrossRefGoogle Scholar
  5. 5.
    Herrera, L.J., Pomares, H., Rojas, I., González, J., Valenzuela, O.: Function approximation through fuzzy systems using taylor series expansion-based rules: Interpretability and parameter tuning. In: Monroy, R., Arroyo-Figueroa, G., Sucar, L.E., Sossa, H. (eds.) MICAI 2004. LNCS (LNAI), vol. 2972, pp. 252–261. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Herrera, L.J., Pomares, H., Rojas, I., Valenzuela, O., Prieto, A.: TaSe, a Taylor Series Based Fuzzy System Model that Combines Interpretability and Accuracy. Fuzzy Sets and Systems (accepted)Google Scholar
  7. 7.
    González, J., Rojas, I., Pomares, H., Ortega, J., Prieto, A.: A new Clustering Technique for Function Aproximation. IEEE Transactions on Neural Networks 13(1), 132–142 (2002)CrossRefGoogle Scholar
  8. 8.
    Pomares, H., Rojas, I., Ortega, J., Prieto, A.: A systematic approach to a self-generating fuzzy rule-table for function approximation. IEEE Trans. Syst., Man, Cybern. 30, 431–447 (2000)CrossRefGoogle Scholar
  9. 9.
    Chiu, S.: Fuzzy Model Identification Based on Cluster Estimation. Journal of Intelligent and Fuzzy Systems 2(3) (1994)Google Scholar
  10. 10.
    Guillaume, S.: Designing fuzzy inference systems from data: an interpretability-oriented review. IEEE Trans. Fuzzy Systems 9, 426–443 (2001)CrossRefGoogle Scholar
  11. 11.
    Rojas, I., Rojas, F., Pomares, H., Herrera, L.J., González, J., Valenzuela, O.: The synergy between classical and soft-computing techniques for time series prediction. In: Monroy, R., Arroyo-Figueroa, G., Sucar, L.E., Sossa, H. (eds.) MICAI 2004. LNCS (LNAI), vol. 2972, pp. 30–39. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. Wiley, New York (1973)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Luis Javier Herrera
    • 1
  • Héctor Pomares
    • 1
  • Ignacio Rojas
    • 1
  • Alberto Guilén
    • 1
  • Jesús González
    • 1
  • Mohammed Awad
    • 1
  1. 1.Department of Computer Architecture and Technology, E.T.S. Computer EngineeringUniversity of GranadaGranadaSpain

Personalised recommendations