Some Reducibilities on Regular Sets

  • Victor L. Selivanov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3526)


We discuss some known and introduce some new reducibilities on regular sets. We establish some facts on the corresponding degree structures and relate some reducibilities to natural hierarchies of regular sets. As an application, we characterize regular languages whose leaf-language classes (in the balanced model) are contained in the polynomial hierarchy. For any reducibility we try to give some motivation and interesting open questions, in a hope to convince the reader that study of these reducibilities is important for automata theory and computational complexity.


Regular Language Automaton Theory Interesting Open Question Degree Structure Natural Hierarchy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Borchert, B.: On the acceptance power of regular languages. Theoret. Comp. Sci 148, 207–225 (1995)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Borchert, B., Kuske, D., Stephan, F.: On existentially first–order definable languages and their relation to NP. Theor. Informatics Appl. 33, 259–269 (1999)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Bovet, D.P., Crescenzi, P., Silvestri, R.: A uniform approach to define complexity classes. Theoret. Comp. Sci 104, 263–283 (1992)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Büchi, J.R.: Weak second-order arithmetic and finite automata. Z. Math. Logic Grundl. Math. 6, 66–92 (1960)zbMATHCrossRefGoogle Scholar
  5. 5.
    Glaßer, C.: Polylogtime-reductions decrees dot-depth. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 170–181. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Glaßer, C., Schmitz, H.: The Boolean Structure of Dot-Depth One. J. of Automata, Languages and Combinatorics 6, 437–452 (2001)zbMATHGoogle Scholar
  7. 7.
    Hertrampf, U., Lautemann, C., Schwentick, T., Vollmer, H., Wagner, K.W.: On the power of polynomial time bit-reductions. Proc. 8th Structure in Complexity Theory, 200–207 (1993)Google Scholar
  8. 8.
    Immermann, N.: Descriptive Complexity. Springer, Berlin (1999)Google Scholar
  9. 9.
    McNaughton, R., Papert, S.: Counter–free automata. MIT Press, Cambridge (1971)zbMATHGoogle Scholar
  10. 10.
    Pin, J.-E., Weil, P.: Polynomial closure and unambiguous product. Theory of Computing Systems 30, 383–422 (1997)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Selivanov, V.L.: A logical approach to decidability of hierarchies of regular star-free languages. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 539–550. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Selivanov, V.L.: Relating automata-theoretic hierarchies to complexity-theoretic hierarchies. Theoret. Informatics Appl. 36, 29–42 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Selivanov, V.L.: Some hierarchies and reducibilities on regular languages. University of Würzburg, Technical Report 349, 21 (2004)Google Scholar
  14. 14.
    Shukin, A.G.: Difference hierarchies of regular languages. Comp. Systems, Novosibirsk 161, 141–155 (1998) (in Russian)Google Scholar
  15. 15.
    Selivanov, V.L., Shukin, A.G.: On hierarchies of regular star-free languages (in Russian). Preprint 69 of A.P. Ershov Institute of Informatics Systems, p. 28 (2000)Google Scholar
  16. 16.
    Straubing, H.: Finite automata, formal logic and circuit complexity. Birkhäuser, Boston (1994)zbMATHGoogle Scholar
  17. 17.
    Selivanov, V.L., Wagner, K.W.: A reducibility for the dot-depth hierarchy. In: Fiala, J., Koubek, V., Kratochvíl, J. (eds.) MFCS 2004. LNCS, vol. 3153, pp. 783–793. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Thomas, W.: Classifying regular events in symbolic logic. J. Comp. and Syst. Sci. 25, 360–376 (1982)zbMATHCrossRefGoogle Scholar
  19. 19.
    Vereshchagin, N.K.: Relativizable and non-relativizable theorems in the polynomial theory of algorithms. Izvestiya Rossiiskoi Akademii Nauk 57, 51–90 (1993) (in Russian, there is English translation)Google Scholar
  20. 20.
    Wagner, K.W.: On ω-regular sets. Inform. and Control 43, 123–177 (1979)zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Wagner, K.W.: Leaf language classes. In: Margenstern, M. (ed.) MCU 2004. LNCS, vol. 3354, pp. 60–81. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Victor L. Selivanov
    • 1
  1. 1.A.P. Ershov Institute of Informatics SystemsSiberian Division of the Russian Academy of SciencesRussia

Personalised recommendations