Complexity in Predicative Arithmetic

  • Geoffrey E. Ostrin
  • Stan S. Wainer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3526)

Abstract

Complexity classes between Grzegorczyk’s E2 and E3 are characterized in terms of provable recursion in a theory EA(I;O) formalising basic principles of Nelson’s Predicative Arithmetic. Extensions by inductive definitions enable full arithmetic PA and higher systems to be recaptured in a setting where the natural bounding functions are “slow” rather than “fast” growing.

Keywords

provable recursion ordinal analysis slow growing hierarchy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bellantoni, S., Cook, S.: A new recursion theoretic characterization of the polytime functions. Computational Complexity 2, 97–110 (1992)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Buchholz, W.: An independence result for \(\Pi^1_1\)–CA + BI. Annals of Pure and Applied Logic 23, 131–155 (1987)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Leivant, D.: Intrinsic theories and computational complexity. In: Leivant, D. (ed.) LCC 1994. LNCS, vol. 960, pp. 177–194. Springer, Heidelberg (1995)Google Scholar
  4. 4.
    Nelson, E.: Predicative arithmetic. Princeton (1986)Google Scholar
  5. 5.
    Ostrin, G.E., Wainer, S.S.: Proof theoretic complexity. In: Schwichtenberg, H., Steinbrüggen, R. (eds.) Proof and System Reliability, pp. 369–397. Kluwer, Dordrecht (2002)Google Scholar
  6. 6.
    Wainer, S.S., Williams, R.S.: Inductive definitions over a predicative arithmetic. Annals of Pure and Applied Logic (to appear)Google Scholar
  7. 7.
    Williams, R.S.: Finitely iterated inductive definitions over a predicative arithmetic, Ph.D. thesis, Leeds (2004)Google Scholar
  8. 8.
    Wirz, M.: Wellordering two sorts. preliminary report, Bern (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Geoffrey E. Ostrin
    • 1
  • Stan S. Wainer
    • 2
  1. 1.Institut für Informatik und angewandte MathematikBernSwitzerland
  2. 2.Department of Pure MathematicsUniversity of LeedsLeedsUK

Personalised recommendations