Infinitary Computability with Infinite Time Turing Machines

  • Joel David Hamkins
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3526)

Abstract

Recent developments in the theory of infinite time Turing machines include the solution of the infinitary P versus NP problem and the rise of infinitary computable model theory.

Keywords

Turing Machine Time Analogue Computable Presentation Time Context Halt State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hamkins, J.D., Lewis, A.: Infinite time Turing machines. J. Symbolic Logic 65, 567–604 (2000)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Welch, P.: The lengths of infinite time Turing machine computations. Bulletin of the London Mathematical Society 32, 129–136 (2000)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Welch, P.: Eventually infinite time Turing machine degrees: Infinite time decidable reals. Journal of Symbolic Logic 65, 1193–1203 (2000)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Hamkins, J.D., Lewis, A.: Post’s problem for supertasks has both positive and negative solutions. Archive for Mathematical Logic 41, 507–523 (2002)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Welch, P.: Friedman’s trick: Minimality arguments in the infinite time Turing degrees. “Sets and Proofs”, Proceedings ASL Logic Colloquium 258, 425–436 (1999)MathSciNetGoogle Scholar
  6. 6.
    Hamkins, J.D., Seabold, D.: Infinite time Turing machines with only one tape. Mathematical Logic Quarterly 47, 271–287 (2001)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Löwe, B.: Revision sequences and computers with an infinite amount of time. Logic Comput. 11, 25–40 (2001)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Schindler, R.D.: P ≠ NP for infinite time Turing machines. Monatshefte für Mathematik 139, 335–340 (2003)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Deolalikar, V., Hamkins, J.D., Schindler, R.D.: P ≠ NP ∩ co − NP for infinite time turing machines (submitted)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Joel David Hamkins
    • 1
    • 2
  1. 1.Mathematics DepartmentThe College of Staten Island of The City University of New YorkStaten IslandUSA
  2. 2.The Graduate Center of The City University of New YorkNew YorkUSA

Personalised recommendations