Advertisement

On the Computational Complexity of P Automata

  • Erzsébet Csuhaj-Varjú
  • Oscar H. Ibarra
  • György Vaszil
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3384)

Abstract

We characterize the classes of languages described by P automata, i.e., accepting P systems with communication rules only. Motivated by properties of natural computing systems, we study computational complexity classes with a certain restriction on the use of the available workspace in the course of computations and relate these to the language classes described by P automata. We prove that if the rules of the P system are applied sequentially, then the accepted language class is strictly included in the class of languages accepted by one-way Turing machines with a logarithmically bounded workspace, and if the rules are applied in the maximal parallel manner, then the class of context-sensitive languages is obtained.

Keywords

Turing Machine Mathematical Linguistics Rule Application Input Symbol Input Tape 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Csuhaj-Varjú, E., Vaszil, G.: P Automata. In: Păun, G., et al. (eds.) WMC 2002. LNCS, vol. 2597, pp. 219–233. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Fischer, P.C.: Turing Machines with Restricted Memory Access. Information and Control 9, 364–379 (1966)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Freund, R., Martín-Vide, C., Obtułowicz, A., Păun, G.: On Three Classes of Automata-like P Systems. In: Ésik, Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 292–303. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Freund, R., Oswald, M.: A Short Note on Analysing P Systems. Bulletin of the EATCS 78, 231–236 (2002)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Ibarra, O.H.: On the Computational Complexity of Membrane Systems. Theoretical Computer Science C (to appear)Google Scholar
  6. 6.
    Ibarra, O.H.: The Number of Membranes Matters. In: Alhazov, A., Martín-Vide, C., Păun, Gh. (eds.): Workshop on Membrane Computing, WMC-2003, Tarragona, July 17-22, Technical Report 28/03 of the Research Group on Mathematical Linguistics, Rovira i Virgili University, Tarragona, Spain, 273-285 (2003)Google Scholar
  7. 7.
    Madhu, M., Krithivasan, K.: On a Class of P Automata (submitted)Google Scholar
  8. 8.
    Martín-Vide, C., Păun, A., Păun, G.: On the Power of P Systems with Symport Rules. Journal of Universal Computer Science 8(2), 317–331 (2002)MathSciNetGoogle Scholar
  9. 9.
    Păun, A., Păun, G.: The Power of Communication: P Systems with Symport/Antiport. New Generation Computing 20(3), 295–306 (2002)zbMATHCrossRefGoogle Scholar
  10. 10.
    Păun, G.: Computing with Membranes: An Introduction. Springer, Berlin (2002)Google Scholar
  11. 11.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 1-3. Springer, Berlin (1997)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Erzsébet Csuhaj-Varjú
    • 1
  • Oscar H. Ibarra
    • 2
  • György Vaszil
    • 1
  1. 1.Computer and Automation Research InstituteHungarian Academy of SciencesBudapestHungary
  2. 2.Department of Computer ScienceUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations