DNA Hybridization Catalysts and Catalyst Circuits

  • Georg Seelig
  • Bernard Yurke
  • Erik Winfree
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3384)


Practically all of life’s molecular processes, from chemical synthesis to replication, involve enzymes that carry out their functions through the catalysis of metastable fuels into waste products. Catalytic control of reaction rates will prove to be as useful and ubiquitous in DNA nanotechnology as it is in biology. Here we present experimental results on the control of the decay rates of a metastable DNA “fuel”. We show that the fuel complex can be induced to decay with a rate about 1600 times faster than it would decay spontaneously. The original DNA hybridization catalyst [15] achieved a maximal speed-up of roughly 30. The fuel complex discussed here can therefore serve as the basic ingredient for an improved DNA hybridization catalyst. As an example application for DNA hybridization catalysts, we propose a method for implementing arbitrary digital logic circuits.


Strand Displacement Uncatalyzed Reaction Catalyst Design Branch Migration Metastable Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Carmi, N., Balkhi, S.R., Breaker, R.R.: Cleaving DNA with DNA. Proceedings of the National Academy of Sciences 95, 2233–2237 (1998)CrossRefGoogle Scholar
  2. 2.
    Flamm, C., Fontana, W., Hofacker, I., Schuster, P.: RNA folding at elementary step resolution. RNA 6, 325–338 (2000)CrossRefGoogle Scholar
  3. 3.
    Gesteland, R.F., Cech, T.R., Atkins, J.F.: The RNA world. Cold Spring Harbor Laboratory Press, New York (1999)Google Scholar
  4. 4.
    Green, C., Tibbetts, C.: Reassociation rate-limited displacement of DNA strands by branch migration. Nucleic Acids Research 9, 1905–1918 (1981)CrossRefGoogle Scholar
  5. 5.
    Magnasco, M.O.: Chemical kinetics is Turing universal. Physical Review Letters 78(6), 1190–1193 (1997)CrossRefGoogle Scholar
  6. 6.
    Mao, C.D., Sun, W.Q., Shen, Z.Y., Seeman, N.C.: A nanomechanical device based on the B-Z transition of DNA. Nature 397, 144–146 (1999)CrossRefGoogle Scholar
  7. 7.
    Niemeyer, C.M., Adler, M.: Nanomechanical devices based on DNA. Angewandte Chemie International Edition 41(20), 3779–3783 (2002)CrossRefGoogle Scholar
  8. 8.
    Panyutin, I.G., Biswas, I., Hsieh, P.: A pivotal role for the structure of the Holliday junction in DNA branch migration. The EMBO Journal 14(8), 1819–1826 (1995)Google Scholar
  9. 9.
    Panyutin, I.G., Hsieh, P.: Kinetics of spontaneous DNA branch migration. Proceedings of the National Academy of Sciences 91, 2021–2025 (1994)CrossRefGoogle Scholar
  10. 10.
    Radding, C., Beattie, K., Holloman, W., Wiegand, R.: Uptake of homologous single-stranded fragments by superhelical DNA. IV. branch migration. J. Mol. Biol. 166, 825–839 (1977)CrossRefGoogle Scholar
  11. 11.
    Santoro, S.W., Joyce, G.F.: A general purpose DNA cleaving RNA enzyme. Proceedings of the National Academy of Sciences USA 94, 4262–4266 (1997)CrossRefGoogle Scholar
  12. 12.
    Sherman, W.B., Seeman, N.C.: A precisely controlled DNA biped walking device. Nano Letters 4(7), 1203–1207 (2004)CrossRefGoogle Scholar
  13. 13.
    Shin, J., Pierce, N.: A synthetic DNA walker for molecular transport. Journal of the American Chemical Society 126(35), 10834–10835 (2004)CrossRefGoogle Scholar
  14. 14.
    Stojanovic, M.N., Mitchell, T.E., Stefanovic, D.: Deoxyribozyme-based logic gates. Journal of the American Chemical Society 124, 3555–3561 (2002)CrossRefGoogle Scholar
  15. 15.
    Turberfield, A.J., Mitchell, J.C., Yurke, B., Mills Jr., A.P., Blakey, M.I., Simmel, F.C.: DNA fuel for free-running nanomachines. Physical Review Letters 90(11), 118102–1–4 (2003)CrossRefGoogle Scholar
  16. 16.
    Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998)CrossRefGoogle Scholar
  17. 17.
    Wong, D.M., Weinstock, P.H., Wetmur, J.G.: Branch capture reactions: displacers derived from asymmetric PCR. Nucleic Acids Research 19, 2251–2259 (1991)CrossRefGoogle Scholar
  18. 18.
    Yurke, B., Mills Jr., A.P.: Using DNA to power nanostructures. Genetic Programming and Evolvable Machines 4, 111–122 (2003)CrossRefGoogle Scholar
  19. 19.
    Yurke, B., Turberfield, A.J., Mills Jr., A.P., Simmel, F.C., Neumann, J.L.: A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000)CrossRefGoogle Scholar
  20. 20.
    Zhang, D.Y., Schaeffer, J.: Personal communication (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Georg Seelig
    • 1
  • Bernard Yurke
    • 1
    • 2
  • Erik Winfree
    • 1
  1. 1.California Institute of TechnologyPasadenaUSA
  2. 2.Bell LaboratoriesMurray HillUSA

Personalised recommendations