Advertisement

Accepting Hybrid Networks of Evolutionary Processors

  • Maurice Margenstern
  • Victor Mitrana
  • Mario J. Pérez-Jiménez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3384)

Abstract

We consider time complexity classes defined on accepting hybrid networks of evolutionary processors (AHNEP) similarly to the classical time complexity classes defined on the standard computing model of Turing machine. By definition, AHNEPs are deterministic. We prove that the classical complexity class NP equals the set of languages accepted by AHNEPs in polynomial time.

Keywords

Turing Machine Mathematical Linguistics Hybrid Network Input Word Tape Head 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Castellanos, J., Martin-Vide, C., Mitrana, V., Sempere, J.: Solving NP-complete problems with networks of evolutionary processors. In: Mira, J., Prieto, A.G. (eds.) IWANN 2001. LNCS, vol. 2084, pp. 621–628. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Castellanos, J., Martin-Vide, C., Mitrana, V., Sempere, J.: Networks of evolutionary processors. Acta Informatica 39, 517–529 (2003)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Castellanos, J., Leupold, P., Mitrana, V.: Descriptional and computational complexity aspects of hybrid networks of evolutionary processors (submitted)Google Scholar
  4. 4.
    Csuhaj-Varjú, E., Salomaa, A.: Networks of parallel language processors. In: Păun, G., Salomaa, A. (eds.) New Trends in Formal Languages. LNCS, vol. 1218, pp. 299–318. Springer, Heidelberg (1997)Google Scholar
  5. 5.
    Csuhaj-Varjú, E., Mitrana, V.: Evolutionary systems: a language generating device inspired by evolving communities of cells. Acta Informatica 36, 913–926 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Errico, L., Jesshope, C.: Towards a new architecture for symbolic processing. In: Plander, I. (ed.) Artificial Intelligence and Information-Control Systems of Robots 1994, pp. 31–40. World Sci. Publ., Singapore (1994)Google Scholar
  7. 7.
    Fahlman, S.E., Hinton, G.E., Seijnowski, T.J.: Massively parallel architectures for AI: NETL, THISTLE and Boltzmann machines. In: Proc. AAAI National Conf. on AI, pp. 109–113. William Kaufman, Los Altos (1983)Google Scholar
  8. 8.
    Hartmanis, J., Lewis II, P.M., Stearns, R.E.: Hierarchies of memory limited computations. In: Proc. 6th Annual IEEE Symp. on Switching Circuit Theory and Logical Design, pp. 179–190 (1965)Google Scholar
  9. 9.
    Hartmanis, J., Stearns, R.E.: On the computational complexity of algorithms. Trans. Amer. Math. Soc. 117, 533–546 (1965)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Hillis, W.D.: The Connection Machine. MIT Press, Cambridge (1985)Google Scholar
  11. 11.
    Martin-Vide, C., Mitrana, V., Perez-Jimenez, M., Sancho-Caparrini, F.: Hybrid networks of evolutionary processors. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 401–412. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Sankoff, D., et al.: Gene order comparisons for phylogenetic inference:Evolution of the mitochondrial genome. Proc. Natl. Acad. Sci. USA 89, 6575–6579 (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Maurice Margenstern
    • 1
  • Victor Mitrana
    • 2
    • 3
  • Mario J. Pérez-Jiménez
    • 4
  1. 1.LITA, UFR MIMUniversity of MetzMetzFrance
  2. 2.Faculty of Mathematics and Computer ScienceUniversity of BucharestBucharestRomania
  3. 3.Research Group in Mathematical LinguisticsRovira i Virgili UniversityTarragonaSpain
  4. 4.Department of Computer Science and Artificial IntelligenceUniversity of Seville 

Personalised recommendations