Preventing Undesirable Bonds Between DNA Codewords

  • Lila Kari
  • Stavros Konstantinidis
  • Petr Sosík
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3384)


The input data for DNA computing must be encoded into the form of single or double DNA strands. As complementary parts of single strands can bind together forming a double-stranded DNA sequence, one has to impose restrictions on these sets of DNA words (=languages) to prevent them from interacting in undesirable ways. We recall a list of known properties of DNA languages which are free of certain types of undesirable bonds. Then we introduce a general framework in which we can characterize each of these properties by a solution of a uniform formal language inequation. This characterization allows us among others to construct (i) a uniform algorithm deciding in polynomial time whether a given DNA language possesses any of the studied properties, and (ii) in many cases also an algorithm deciding whether a given DNA language is maximal with respect to the desired property.


Regular Language Quadratic Time Maximal Subset Phrase Degree Language Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arita, M., Kobayashi, S.: DNA sequence design using templates. New Generation Computing 20, 263–277 (2002)zbMATHCrossRefGoogle Scholar
  2. 2.
    Domaratzki, M.: Deletion Along Trajectories. Tech. Report 464-2003, School of Computing, Queen’s University (2003) (submitted for publication)Google Scholar
  3. 3.
    Head, T.: Relativised code concepts and multi-tube DNA dictionaries. In: Calude, C.S., Păun, G. (eds.) Finite Versus Infinite: Contributions to an Eternal Dilemma, pp. 175–186. Springer, London (2000)Google Scholar
  4. 4.
    Hussini, S., Kari, L., Konstantinidis, S.: Coding properties of DNA languages. theoretical Computer Science 290/3, 1557–1579 (2002)MathSciNetGoogle Scholar
  5. 5.
    Jonoska, N., Kephart, D., Mahalingam, K.: Generating DNA code words. Congressus Numerantium 156, 99–110 (2002)MathSciNetGoogle Scholar
  6. 6.
    Jonoska, N., Mahalingam, K.: Languages of DNA based code words. In: Chen, J., Reif, J.H. (eds.) DNA 2003. LNCS, vol. 2943, pp. 58–68. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Kari, L.: On insertion and deletion in formal languages, PhD thesis, University of Turku, Finland (1991)Google Scholar
  8. 8.
    Kari, L., Kitto, R., Thierrin, G.: Codes, involutions and DNA encoding. In: Brauer, W., Ehrig, H., Karhumäki, J., Salomaa, A. (eds.) Formal and Natural Computing. LNCS, vol. 2300, pp. 376–393. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Kari, L., Konstantinidis, S.: Language equations, maximality and error detection (submitted for publication)Google Scholar
  10. 10.
    Kari, L., Konstantinidis, S., Losseva, E., Wozniak, G.: Sticky-free and overhang-free DNA languages. Acta Informatica 40, 119–157 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Kari, L., Konstantinidis, S., Sosík, P.: On Properties of Bond-Free DNA Languages. Dept. of Computer Science Tech. Report No. 609, Univ. of Western Ontario (2003) (submitted for publication)Google Scholar
  12. 12.
    Kari, L., Sosík, P.: Language deletion on trajectories. Dept. of Computer Science Technical Report No. 606, University of Western Ontario, London (2003)Google Scholar
  13. 13.
    Marathe, A., Condon, A.E., Corn, R.M.: On combinatorial DNA words design. J. Computational Biology 8(3) (2001)Google Scholar
  14. 14.
    Mauri, G., Ferretti, C.: Word Design for Molecular Computing: A Survey. In: Chen, J., Reif, J.H. (eds.) DNA 2003. LNCS, vol. 2943, pp. 37–46. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Mateescu, A., Rozenberg, G., Salomaa, A.: Shuffle on trajectories: syntactic constraints, TUCS technical report No. 41, Turku Centre for Computer Science, 1996, and Theoretical Computer Science 197, 1–56 (1998)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing. New Computing Paradigms. Springer, Berlin (1998)zbMATHGoogle Scholar
  17. 17.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer, Berlin (1997)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Lila Kari
    • 1
  • Stavros Konstantinidis
    • 2
  • Petr Sosík
    • 1
    • 3
  1. 1.Department of Computer ScienceThe University of Western OntarioLondonCanada
  2. 2.Dept. of Mathematics and Computing ScienceSaint Mary’s UniversityHalifax, Nova ScotiaCanada
  3. 3.Institute of Computer ScienceSilesian UniversityOpavaCzech Republic

Personalised recommendations