3D Face Recognition Using Stereoscopic Vision

  • U. Castellani
  • M. Bicego
  • G. Iacono
  • V. Murino
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3161)


In this paper a new complete system for 3D face recognition is presented. 3D face recognition presents several advantages against 2D face recognition, as, for example, invariance to illumination conditions. The proposed system makes use of a stereo methodology, that does not require any expensive range sensors. The 3D image of the face is modelled using Multilevel B-Splines coefficients, that are classified using Support Vector Machines. Preliminary experimental evaluation has produced encouraging results, making the proposed system a promising low cost 3D face recognition system.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chellappa, R., Wilson, C., Sirohey, S.: Human and machine recognition of faces: a survey. Proceedings of IEEE 83, 705–740 (1995)CrossRefGoogle Scholar
  2. 2.
    Ming-Hsuan, Y., Kriegman, D., Ahuja, N.: Detecting faces in images: a survey. IEEE Trans. on Pattern Analysis and Machine Intelligence 24, 34–58 (2002)CrossRefGoogle Scholar
  3. 3.
    Ho-Chao, H., Ming, O., Wu, J.L.: Automatic feature point extraction on a human face in model-based image coding. Optical Engineering 32, 1571–1580 (1993)CrossRefGoogle Scholar
  4. 4.
    Lapresté, J., Cartoux, J., Richetin, M.: Face recognition from range data by structural analysis. In: Syntactic and Structural Pattern Recognition. NATO ASI Series, pp. 303–314 (1988)Google Scholar
  5. 5.
    Gordon, G.: Face Recognition from depth and curvature. PhD thesis, Harvard University (1991)Google Scholar
  6. 6.
    Gordon, G.: Face recognition based on depth and curvature features. In: Proc. of Int. Conf. on Computer Vision and Pattern Recognition, pp. 808–810 (1992)Google Scholar
  7. 7.
    Achermann, B., Jiang, X., Bunke, H.: Face recognition using range images. In: Proc. of Int. Conf. on Virtual Systems and MultiMedia, pp. 129–136 (1997)Google Scholar
  8. 8.
    Achermann, B.: Face recognition using range images. PhD thesis, Institute of Computer Science and Applied Mathematics, University of Bern (1998)Google Scholar
  9. 9.
    Achermann, B., Bunke, H.: Classifying range images of human faces with hausdorff distance. In: Proc. of Int. Conf. on Pattern Recognition, vol. 2, pp. 809–813 (2000)Google Scholar
  10. 10.
    Dhond, U.R., Aggarwal, J.K.: Structure from stereo – a review. IEEE Trans. on System Man and Cybernetics 19, 1489–1510 (1989)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Lee, S., Wolberg, G., Shin, S.Y.: Scattered data interpolation with multilevel bsplines. IEEE Trans. on Visualization and Computer Graphics 3, 228–244 (1997)CrossRefGoogle Scholar
  12. 12.
    Burges, C.: A tutorial on support vector machine for pattern recognition. Data Mining and Knowledge Discovery 2, 121–167 (1998)CrossRefGoogle Scholar
  13. 13.
    Pontil, M., Verri, A.: Support vector machines for 3-d object recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence 20, 637–646 (1998)CrossRefGoogle Scholar
  14. 14.
    Bicego, M., Iacono, G., Murino, V.: Face recognition with multilevel b-splines and support vector machines. In: Proc. of ACM SIGMM Multimedia Biometrics Methods and Applications Workshop (2003)Google Scholar
  15. 15.
    Zhang, Z.: Flexible camera calibration by viewing a plane from unknown orientations. In: Proc. of Int. Conf. on Computer Vision, Corfu, Greece (1999)Google Scholar
  16. 16.
    Fusiello, A., Trucco, E., Verri, A.: A compact algorithm for rectification of stereo pairs. Machine Vision and Applications 12, 16–22 (2000)CrossRefGoogle Scholar
  17. 17.
    Fusiello, A., Castellani, U., Murino, V.: Relaxing symmetric multiple windows stereo using markov random fields. In: Figueiredo, M., Zerubia, J., Jain, A.K. (eds.) EMMCVPR 2001. LNCS, vol. 2134, pp. 91–104. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. 18.
    Trucco, E., Verri, A.: Introductory Techniques for 3-D Computer Vision. Prentice-Hall, Englewood Cliffs (1998)Google Scholar
  19. 19.
    Guo, G., Li, S.Z., Kapluk, C.: Face recognition by support vector machines. Image and Vision Computing 19, 631–638 (2001)CrossRefGoogle Scholar
  20. 20.
    Vapnik, V.: The Nature of Statistical Learning Theory. Springer, Heidelberg (1995)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • U. Castellani
    • 1
  • M. Bicego
    • 1
  • G. Iacono
    • 1
  • V. Murino
    • 1
  1. 1.Dipartimento di InformaticaUniversità di VeronaVeronaItalia

Personalised recommendations