Theories of Intentions in the Framework of Situation Calculus

  • Pilar Pozos Parra
  • Abhaya Nayak
  • Robert Demolombe
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3476)


We propose an extension of action theories to intention theories in the framework of situation calculus. Moreover the method for implementing action theories is adapted to consider the new components. The intention theories take account of the BDI (Belief-Desire-Intention) architecture. In order to avoid the computational complexity of theorem proving in modal logic, we explore an alternative approach that introduces the notions of belief, goal and intention fluents together with their associated successor state axioms. Hence, under certain conditions, reasoning about the BDI change is computationally similar to reasoning about ordinary fluent change. This approach can be implemented using declarative programming.


Belief Revision Predicate Symbol Frame Problem Situation Calculus Intention Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Singh, M.P.: Multiagent Systems. A Theoretical Framework for Intentions, Know-How, and Communications. LNCS (LNAI), vol. 799. Springer, Heidelberg (1994)Google Scholar
  2. 2.
    Wooldridge, M.: Reasoning about Rational Agents. MIT Press, Cambridge (2000)MATHGoogle Scholar
  3. 3.
    Singh, M.P., Rao, A., Georgeff, M.: Formal method in dai: Logic based representation and reasoning. In: Weis, G. (ed.) Introduction to Distributed Artificial Intelligence, New York. MIT Press, Cambridge (1998)Google Scholar
  4. 4.
    van Linder, B.: Modal Logics for Rational Agents. PhD thesis, University of Utrecht (1996)Google Scholar
  5. 5.
    Rao, A., Georgeff, M.: Modeling Rational Agents within a BDI Architecture. In: Proceedings of the Second International Conference on Principles of Knowledge Representation and Reasoning. Morgan Kaufmann, San Francisco (1991)Google Scholar
  6. 6.
    Cohen, P.R., Levesque, H.J.: Intention is choice with commitment. Artificial Intelligence 42, 213–261 (1990)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Rao, A.: Agentspeak(l): BDI agents speak out in a logical computable language. In: Perram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp. 42–55. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  8. 8.
    Dixon, C., Fisher, M., Bolotov, A.: Resolution in a logic of rational agency. In: Proceedings of the 14th European Conference on Artificial Intelligence (ECAI 2000), Berlin, Germany. IOS Press, Amsterdam (2000)Google Scholar
  9. 9.
    Hustadt, U., Dixon, C., Schmidt, R., Fisher, M., Meyer, J.J., van der Hoek, W.: Verification within the KARO agent theory. In: Rash, J.L., Rouff, C.A., Truszkowski, W., Gordon, D.F., Hinchey, M.G. (eds.) FAABS 2000. LNCS (LNAI), vol. 1871, p. 33. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Demolombe, R., Pozos Parra, P.: BDI architecture in the framework of Situation Calculus. In: Proc. of the Workshop on Cognitive Modeling of Agents and Multi-Agent Interactions at IJCAI, Acapulco, Mexico (2003)Google Scholar
  11. 11.
    Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems. The MIT Press, Cambridge (2001)MATHGoogle Scholar
  12. 12.
    Reiter, R.: The frame problem in the situation calculus: a simple solution (sometimes) and a completeness result for goal regression. In: Lifschitz, V. (ed.) Artificial Intelligence and Mathematical Theory of Computation: Papers in Honor of John McCarthy, pp. 359–380. Academic Press, London (1991)Google Scholar
  13. 13.
    Petrick, R., Levesque, H.: Knowledge equivalence in combined action theories. In: Proceedings of the 8th International Conference on Knowledge Representation and Reasoning, pp. 613–622 (2002)Google Scholar
  14. 14.
    Katsuno, H., Mendelzon, A.: On the difference between updating a Knowledge Base and Revising it. In: Proceedings of the Second International Conference on Principles of Knowledge Representation and Reasoning, pp. 387–394 (1991)Google Scholar
  15. 15.
    Pirri, F., Reiter, R.: Some contributions to the metatheory of the situation calculus. Journal of the ACM 46, 325–361 (1999)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Levesque, H., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.: GOLOG: A Logic Programming Language for Dynamic Domains. Journal of Logic Programming 31, 59–84 (1997)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Scherl, R., Levesque, H.: The Frame Problem and Knowledge Producing Actions. In: Proc. of the National Conference of Artificial Intelligence. AAAI Press, Menlo Park (1993)Google Scholar
  18. 18.
    van Riemsdijk, B., Dastani, M., Dignum, F., Meyer, J.J.: Dynamics of Declarative Goals in Agent Programming. In: Leite, J., Omicini, A., Torroni, P., Yolum, p. (eds.) DALT 2004. LNCS (LNAI), vol. 3476, pp. 1–18. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Pilar Pozos Parra
    • 1
  • Abhaya Nayak
    • 1
  • Robert Demolombe
    • 2
  1. 1.Division of ICSMacquarie UniversityAustralia
  2. 2.ONERA-ToulouseToulouseFrance

Personalised recommendations