Thresholding Methods on MRI to Evaluate Intramuscular Fat Level on Iberian Ham

  • Mar Ávila
  • Marisa Luisa Durán
  • Andres Caro
  • Teresa Antequera
  • Ramiro Gallardo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3523)


Thresholding techniques are the simplest and most widely used methods to automatically segments images. These are used to segment images into several regions. This paper works over two sets of Iberian ham images: images taken by a digital camera (CCD) and Magnetic Resonance images (MRI), in order to establish a comparative for the performance on each kind of images. A methodology to determine the intramuscular fat (IMF) level of Iberian ham using computer vision techniques has been developed, as an attempt to find an alternative methodology to the traditional and destructive methods. The correlation between the chemical data and the computer vision results have been established in the paper. The main conclusions of the work are that better results have been obtained for MRI, which do not require preprocessing methods. So, the proposed approach to determine the IMF level could be considered as an alternative to the traditional and destructive methods.


Magnetic Resonance Image Median Filter Biceps Femoris Kernel Size Preprocessing Stage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Antequera, T., López-Bote, C.J., Córdoba, J.J., García, C., Asensio, M.A., Ventanas, J., Díaz, Y.: Lipid oxidative changes in the processing of Iberian pig hams. Food Chem. 45, 105 (1992)CrossRefGoogle Scholar
  2. 2.
    Cameron, N.D., Warris, P.D., Forte, J.S., Enser, M.B.: Comparison of Duroc and British Landrace Pigs for Meat and Eating Quality. Meat Science 27, 227 (1990)CrossRefGoogle Scholar
  3. 3.
    Caro, A., Rodríguez, P.G., Cernadas, E., Antequera, T.: Disminución volumétrica del jamón ibérico durante su maduración analizando imágenes de Resonancia Magnética mediante Contornos Activos. Revista Información Tecnológica 13(3), 175–180 (2002)Google Scholar
  4. 4.
    Caro, A., Durán, M.L., Rodríguez, P.G., Antequera, T., Palacios, R.: Mathematical Morphology on MRI for the Determination of Iberian Ham Fat Content. In: Sanfeliu, A., Ruiz-Shulcloper, J. (eds.) CIARP 2003. LNCS, vol. 2905, pp. 359–366. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Colton, T.: Statistical in Medicine. Little Brown and Co, Boston (1974)Google Scholar
  6. 6.
    Davies, A.M.C., Grant, A.: International Journal of Food Science & Technologies  22, 191–207 (1987)Google Scholar
  7. 7.
    Durán, M.L., Cernadas, E., Plaza, A., Sánchez, J.M., Antequera, T.: Comparative Study of Segmentation Techniques to Evaluate Fat-Level in Iberian Ham, VIII NSPRIA, Bilbao, Spain, 45–46 (1999)Google Scholar
  8. 8.
    Durán, M.L., Cernadas, E., Plaza, A., Sánchez, J.M., Rodríguez, F., Petrón, M.J.: Could Machine Vision Replace Chemical Procedure to Evaluate Fat Content in Iberian Pig Meat? An Experimental Study. In: 3rd Int. Conf. on Computer Vision, Pattern Recognition, and Image Processing, pp. 256–259 (2000)Google Scholar
  9. 9.
    Haralick, Shapiro: Computer and Robot Vision, vol. I. Addison-Wesley, Reading (1992)Google Scholar
  10. 10.
    Johannshen, G., Bille, J.: A threshold selection method using information measures. In: Proceedings, 6th Int. Conference of Pattern Recognition, pp. 140–143 (1982)Google Scholar
  11. 11.
    Kapur, J.N., Sahoo, P.K., Wong, A.K.C.: A New Method for Gray-Level Picture Thresholding Using the Entropy of the Histogram. In: CVGIP, vol. 29, pp. 273–285 (1985)Google Scholar
  12. 12.
    Otsu, N.: A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Systems, Man, and Cybernetics SMC-9(1) (1979)Google Scholar
  13. 13.
    Penfield, M.P., Costello, C.A., McNeil, M.A., Rienmannn, M.J.: Effects of Fat Level and Cooking Methods on Physical and Sensory Characteristics of Reestructure Beef Streaks. Journal Food Qual. 11, 349 (1989)CrossRefGoogle Scholar
  14. 14.
    Petrón, M.J.: Estudio Comparativo de la Fracción Lipídica de Jamón Fresco en Diferentes Tipos de Cerdo Ibérico, PostGraduate Project, Universidad de Extremadura (1998) Google Scholar
  15. 15.
    Pun, T.: Entropic thresholding: A new approach. In: CVGIP, vol. 16, pp. 210–239 (1981)Google Scholar
  16. 16.
    Ritter, Wilson: Handbook of Computer Vision in Image Algebra. CRC Press (1996)Google Scholar
  17. 17.
    Ruiz, J.: Estudio de parámetros sensoriales y físico-químicos implicados en la calidad del jamón Ibérico, PhD Dissertation, Universidad de Extremadura (1996)Google Scholar
  18. 18.
    Sahoo, P.K., Soltani, S., Wong, A.K.C.: A Survey of Thresholding Techniques. In: CVGIP, vol. 41, pp. 233–260 (1988)Google Scholar
  19. 19.
    Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, London (1982)zbMATHGoogle Scholar
  20. 20.
    Touraine, B., Vigneror, P., Touraille, C. Prud’hom, M.: Influence des onditions d’elevage sur les characteristiques des carcasses et de la viande d’agneaux Merino d’Arles. Bulletin Technique de l’elevage Ovin 4(29) (1984) Google Scholar
  21. 21.
    Tsai, W.-H.: Moment-Preserving Thresholding: A New Approach. In: CVGIP, vol. 29, pp. 377–393 (1985)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Mar Ávila
    • 1
  • Marisa Luisa Durán
    • 1
  • Andres Caro
    • 1
  • Teresa Antequera
    • 2
  • Ramiro Gallardo
    • 3
  1. 1.Computer Science Dept, Escuela PolitécnicaUniversity of ExtremaduraCáceresSpain
  2. 2.Facultad VeterinariaUniversity of Extremadura, Food TechnologyCáceresSpain
  3. 3.“Infanta Cristina” University Hospital, Radiology ServiceBadajozSpain

Personalised recommendations