The Contribution of External Features to Face Recognition

  • Àgata Lapedriza
  • David Masip
  • Jordi Vitrià
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3523)


In this paper we propose a face recognition algorithm that combines internal and external information of face images. Most of the previous works dealing with face recognition use only internal face features to classify, not considering the information located at head, chin and ears. Here we propose an adaptation of a top-down segmentation algorithm to extract external features from face images, and then we combine this information with internal features using a modification of the non parametric discriminant analysis technique. In the experimental results we show that the contribution of external features to face classification problems is clearly relevant, specially in presence of occlusions.


Face Recognition Linear Discriminant Analysis Face Image Internal Feature Scatter Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baron, R.J.: Mechanisms of human facial recognition. International Journal of Man-Machine Studies 15(2), 137–178 (1981)CrossRefGoogle Scholar
  2. 2.
    Vapnik, V.N.: The nature of statistical learning theory. Springer, Heidelberg (1995)zbMATHGoogle Scholar
  3. 3.
    Baron, R.J.: Mechanisms of human facial recognition. International Journal of Man-Machine Studies 15(2), 137–178 (1981)CrossRefGoogle Scholar
  4. 4.
    Sirovich, L., Kirby, M.: Low-dimensional procedure for the characterization of human faces. Journal of Optical Society of America 4(3), 519–524 (1987)CrossRefGoogle Scholar
  5. 5.
    Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of Cognitive Neuroscience 3(1), 71–86 (1991)CrossRefGoogle Scholar
  6. 6.
    Li, Y., Gong, S., Liddell, H.: Support vector regression and classification based multi-view face detection and recognition. In: IEEE International Conference on Automatic Face and Gesture Recognition (March 2000)Google Scholar
  7. 7.
    Howell, J., Lee Giles, C., Tsoi, A.C., Back, A.D.: Face recognition: A convolutional neural network approach. IEEE Transactions on Neural Networks 8(1), 98–113 (1998)Google Scholar
  8. 8.
    Jarudi, N., Sinha, P.: Relative Contributions of Internal and External Features to Face Recognition. Massachusetts Institute of technology (2003)Google Scholar
  9. 9.
    Fisher, R.: The use of multiple measurements in taxonomic problems. Ann. Eugenics 7, 179–188 (1936)Google Scholar
  10. 10.
    Fukunaga, K., Mantock, J.: Nonparametric discriminant analysis. IEEE Trans. Pattern Anal. Machine Intell. 5(6), 671–678 (1983)zbMATHCrossRefGoogle Scholar
  11. 11.
    Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic Press, Boston (1990)zbMATHGoogle Scholar
  12. 12.
    Bressan, M., Vitria, J.: Nonparametric discriminant analysis and nearest neighbor classification. Pattern Recognition Letters 24(15), 2743–2749 (2003)CrossRefGoogle Scholar
  13. 13.
    Borenstein, E., Ullman, S.: Class-Specific, Top-Down Segmentation. In: Proceedings of the 7th European Conference on Computer Vision-Part II, Springer, Heidelberg (2002)Google Scholar
  14. 14.
    Martinez, A., Benavente, R.: The AR face database. Computer Vision Center. Technical Report #24 (June 1998)Google Scholar
  15. 15.
    Gross, R., Shi, J., Cohn, J.: Quo vadis Face Recognition?, Carnegie Mellon University. Technical report CMU-RI-TR-01-17Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Àgata Lapedriza
    • 1
  • David Masip
    • 1
  • Jordi Vitrià
    • 1
  1. 1.Computer Vision Center-Dept. InformàticaUniversitat Autònoma de BarcelonaBellaterra, BarcelonaSpain

Personalised recommendations