Multiscale Approach for Thinning Ridges of Fingerprint

  • Xinge You
  • Bin Fang
  • Yuan Yan Tang
  • Jian Huang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3523)


This paper presents a robust multiscale method to create thinned ridge map of fingerprint for automatic recognition by employing an elaborately designed wavelet function. Properties of the new wavelet function are substantially investigated. Some desirable characteristics of the local minimum produced by wavelet transform show that they are suitable to describe skeleton of ribbon-shape objects. A multiscale thinning algorithm based on the modulus minima of wavelet transform is proposed. The proposed algorithm is able to improve the skeleton representation of the ridge of fingerprint without side-effects and limitations of previous methods. Thinned ridge map helps to facilitate minutiae extraction for matching. Experiments validated effectiveness and efficiency of the proposed method.


Wavelet Function Multiscale Approach Local Minimum Point Ridge Segment Skeleton Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jain, A., Hong, L., Bolle, R.: On-line fingerprint verfication. IEEE Trans. Pattern Anal. Mach. Intell. 19, 302–314 (1997)CrossRefGoogle Scholar
  2. 2.
    Bazen, M., Gerez, S.H.: systematic methods for the computation of the directional fields and singular points of fingerprints. IEEE Trans. Pattern Anal. Mach. Intell. 24, 905–919 (2002)CrossRefGoogle Scholar
  3. 3.
    Bazen, M., Gerez, S.H.: Fingerprint matching by thin-plate spline modeling of elastic deformations. Pattern Recognition 36(8), 1859–1867 (2003)CrossRefGoogle Scholar
  4. 4.
    Ross, A., Dass, S.C., Jain, A.: Estimating fingerprint deformation. In: Proceedings of the international Conference on Biometric Authentication (ICBA ), vol. 9(5), pp. 846–859 (2004)Google Scholar
  5. 5.
    Marcialis, G., Roli, F.: Perceptron-based fusion of multiple fingerprint matchers (2003)Google Scholar
  6. 6.
    Lam, L., Lee, S.W., Suen, C.Y.: Thinning Methodologies - a Comprehensive Survey. IEEE Trans. Pattern Anal. Mach. Intell. 14, 869–885 (1992)CrossRefGoogle Scholar
  7. 7.
    Zou, J.J.: Skeleton represetation of ribbon-like shapes, PhD thesis, School of Electical and Information Engineering, University of Sydney, Sydney (March 2001)Google Scholar
  8. 8.
    Tang, Y.Y., You, X.G.: Skeletonization of ribbon-like shapes based on a new wavelet function. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(9), 1118–1133 (2003)CrossRefGoogle Scholar
  9. 9.
    Blum, H.: A transformation for extracting new desxriptors of shape. In: Wathen-Dunn, W. (ed.) Models for the Perception of Speech and Visual Form, pp. 362–380. The MIT Press, Massachusetts (1967)Google Scholar
  10. 10.
    Brady, M.: Criteria for Representation of Shape. In: Beck, J., Hope, B., Rosenfeld, A. (eds.) Human and Machine Vision, pp. 39–84. Academic Press, New York (1983)Google Scholar
  11. 11.
    Leyton, M.: A process-grammar for shape. Artifial Intell. 34, 213–247 (1988)CrossRefGoogle Scholar
  12. 12.
    Mokhtarian, F., Mackworth, A.K.: A theory of multiscale curvature-based shape representation for planar curves. IEEE Trans. Pattern Anal. Mach. Intell. 14(8), 789–805 (1992)CrossRefGoogle Scholar
  13. 13.
    Wang, Y.-P., Lee, S.L.: Scale-space derived from B-splines. IEEE Trans. Pattern Anal. Mach. Intell. 20(10), 1040–1050 (1998)CrossRefGoogle Scholar
  14. 14.
    Tang, Y.Y., Yang, L.H., Liu, J.M.: Characterization of Dirac-Structure Edges with Wavelet Transform. IEEE Trans. Systems, Man, Cybernetics (B) 30(1), 93–109 (2000)CrossRefGoogle Scholar
  15. 15.
    Yang, L.H., You, X., Haralick, R.M., Phillips, I.T., Tang, Y.: Characterization of Dirac Edge with New Wavelet Transform. In: Proc. 2th Int. Conf. Wavelets and its Application, vol. 1, pp. 872–878 (2001)Google Scholar
  16. 16.
    Kegl, B., Krzyżak, A.: Piecewise linear skeletonization using principal curves. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(1), 59–74 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Xinge You
    • 1
    • 2
  • Bin Fang
    • 1
  • Yuan Yan Tang
    • 1
  • Jian Huang
    • 1
  1. 1.Department of Computer ScienceHong Kong Baptist University 
  2. 2.Faculty of Mathematics and Computer ScienceHubei UniversityP.R. China

Personalised recommendations