Dissimilarity Measures for Visual Pattern Partitioning

  • Raquel Dosil
  • Xosé R. Fdez-Vidal
  • Xosé M. Pardo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3523)


We define a visual pattern as an image feature with frequency components in a range of bands that are aligned in phase. A technique to partition an image into its visual patterns involves clustering of the band-pass filtered versions of the image according to a measure of congruence in phase or, equivalently, alignment in the filter’s responses energy maxima. In this paper we study some measures of dissimilarity between images and discuss their suitability to the specific task of misalignment estimation between energy maps.


Mutual Information Visual Pattern Dissimilarity Measure Attention Point Medical Image Registration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Field, D.J.: Scale.Invariance and self-similar “wavelet” Transforms: An Analysis of Natural Scenes and Mammalian Visual Systems. In: Farge, M., Hunt, J.C.R., Vassilicos, J.C. (eds.) Wavelets, fractals and Fourier Transforms, pp. 151–193. Clarendon Press, Oxford (1993)Google Scholar
  2. 2.
    Rodríguez-Sánchez, R., García, J.A., Fdez-Valdivia, J., Fdez-Vidal, X.R.: The RGFF Representational Model: A System for the Automatically Learned Partition of “Visual Patterns” in Digital Images. IEEE Trans. Pattern Anal. Mach. Intell. 21(10), 1044–1073 (1999)CrossRefGoogle Scholar
  3. 3.
    Chamorro-Martínez, J., Fdez-Valdivia, J.A., García, J.A., Martínez-Baena, J.: A frequency Domain Approach for the Extraction of Motion Patterns. In: IEEE International Conference on Acoustics, Speech and Signal Processing, Hong Kong, vol. 3, pp. 165–168 (2003)Google Scholar
  4. 4.
    Dosil, R., Fdez-Vidal, X.R., Pardo, X.M.: Multiresolution Approach to Visual Pattern Partitioning of 3D Images. In: Campilho, A.C., Kamel, M.S. (eds.) ICIAR 2004. LNCS, vol. 3211, pp. 655–663. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Studholme, C., Hill, D.L.G., Hawkes, D.J.: An Overlap Invariant Entropy Measure of 3D Medical Image Alignment. Pattern Recognition 32, 71–86 (1999)CrossRefGoogle Scholar
  6. 6.
    Viola, P.A.: Alignment by Maximization of Mutual Information. Massachusetts Institute of Technology, Artificial Intelligence Laboratory, Technical Report 1548 (1995)Google Scholar
  7. 7.
    Roche, A., Malandain, G., Ayache, N.: Unifying Maximum Likelihood Approaches in Medical Image Registration. Int. J. of Imaging Systems and Technology 11, 71–80 (2000)CrossRefGoogle Scholar
  8. 8.
    Roche, A., Malandain, G., Pennec, X., Ayache, N.: The Correlation Ratio as a New Similarity Measure for Multimodal Image Registration. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 1115–1124. Springer, Heidelberg (1998)Google Scholar
  9. 9.
    Sarrut, D., Miguet, S.: Similarity Measures for Image Registration. In: 1st European Workshop on Content-Based Multimedia Indexing, Toulouse, France, pp. 263–270 (1999)Google Scholar
  10. 10.
    Basseville, M.: Information: Entropies, divergences et moyennes. Technical Report 1020, IRISA, 35042 Rennes Cedex France (1996)Google Scholar
  11. 11.
    Pal, N.R., Biswas, J.: Cluster Validation Using graph Theoretic Concepts. Pattern Recognition 30(6), 847–857 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Raquel Dosil
    • 1
  • Xosé R. Fdez-Vidal
    • 2
  • Xosé M. Pardo
    • 1
  1. 1.Dep. de Electrónica e ComputaciónUniv. de Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.Escola Politécnica SuperiorUniv. de Santiago de CompostelaLugoSpain

Personalised recommendations