Advertisement

Mathematical Morphology in Polar-Logarithmic Coordinates. Application to Erythrocyte Shape Analysis

  • Miguel A. Luengo-Oroz
  • Jesús Angulo
  • Georges Flandrin
  • Jacques Klossa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3523)

Abstract

We present in this paper the application of mathematical morphology operators through a transformation of the Cartesian image into another geometric space, i.e. pol-log image. The conversion into polar-logarithmic coordinates as well as the derived cyclic morphology provides satisfying results in image analysis applied to round objects or spheroid-shaped 3D-object models. As an example of application, an algorithm for the shape analysis of the shape of red blood cells is given.

Keywords

Mathematical Morphology Binary Mask Cartesian Space Morphological Operator Radial Sense 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angulo, J.: Morphologie mathématique et indexation d’images couleur. Application à la microscopie en biomédecine. Ph.D. Thesis, Ecole des Mines de Paris (2003) Google Scholar
  2. 2.
    Bernardino, A., Santos-Victor, J., Sandini, G.: Model Based Attention Fixation Using Log-Polar Images, Visual Attention Mechanisms. Plenum Press (2002)Google Scholar
  3. 3.
    Bolduc, M., Levine, M.: A review of biologically motivated space-variant data reduction models for robotic vision. CVIU 69(2), 170–184 (1998)Google Scholar
  4. 4.
    Bronkorsta, P., Reinders, M.: On-line detection of red blood cell shape using deformable templates. Pattern Recognition Letters 21, 413–424 (2000)CrossRefGoogle Scholar
  5. 5.
    Klossa, J., Flandrin, G., Hemet, J.: Teleslide: better slide representativeness for digital diagnostic microscopy applications (2002)Google Scholar
  6. 6.
    Lantuejoul, C., Maisonneuve, F.: Geodesic methods in quantitative image analysis. Pattern Recognition 17(2), 177–187 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Luengo Oroz, M.A.: Morphologie mathématique en coordonnées logarithmique-polaires et méthodes géométriques de classification. Application à l’étude des érythocytes. Master Thesis. Ecole des Mines de Paris (2004) Google Scholar
  8. 8.
    Meyer, F.: Skeletons and perceptual graphs. Signal Processing 16, 335–363 (1989)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Serra, J.: Image Analysis and Mathematical Morphology, vol. I & II. Academic Press, London (1982, 1988)Google Scholar
  10. 10.
    Schwartz, E.: Spatial mapping in the primate sensory projection: Analytic structure and relevance to perception. Biological Cybernetics 25, 181–194 (1977)CrossRefGoogle Scholar
  11. 11.
    Vincent, L.: Morphological area openings and closings for grayscale images. In: Proc. NATO Shape in Picture Workshop, Driebergen, Springer, Heidelberg (1992)Google Scholar
  12. 12.
    Weiman, C., Chaikin, G.: Logarithmic spiral grids for image processing and display. Comp Graphics and Image Proc 11, 197–226 (1979)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Miguel A. Luengo-Oroz
    • 1
  • Jesús Angulo
    • 1
  • Georges Flandrin
    • 2
  • Jacques Klossa
    • 3
  1. 1.Centre de Morphologie MathématiqueEcole des Mines de ParisFontainebleauFrance
  2. 2.Unité de TélémédecineHôpital Universitaire NeckerParis
  3. 3.TRIBVN CompanyParisFrance

Personalised recommendations