Advertisement

Spectral Methods in Image Segmentation: A Combined Approach

  • Fernando C. Monteiro
  • Aurélio C. Campilho
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3523)

Abstract

Grouping and segmentation of images remains a challenging problem in computer vision. Recently, a number of authors have demonstrated a good performance on this task using spectral methods that are based on the eigensolution of a similarity matrix. In this paper, we implement a variation of the existing methods that combines aspects from several of the best-known eigenvector segmentation algorithms to produce a discrete optimal solution of the relaxed continuous eigensolution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fowlkes, C., Belongie, S., Chung, F., Malik, J.: Spectral Grouping Using Nyström Method. Trans. on Pattern Analysis and Machine Intelligence 26(2), 214–225 (2004)CrossRefGoogle Scholar
  2. 2.
    Malik, J., Belongie, S., Leung, T., Shi, T.: Contour and Texture Analysis for Image Segmentation. International Journal of Computer Vision 43(1), 7–27 (2001)zbMATHCrossRefGoogle Scholar
  3. 3.
    Martin, D., Fowlkes, C., Tal, D., Malik, J.: A Database of Human Segmented Natural Images and its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics. IEEE Int. Conf. on Computer Vision 2, 416–424 (2001)Google Scholar
  4. 4.
    Meila, M., Shi, J.: Learning Segmentation by Random Walks. Neural Information Processing Systems, 873–879 (2000)Google Scholar
  5. 5.
    Ng, A., Jordan, M., Weiss, Y.: On Spectral Clustering: Analysis and an Algorithm. Advances in Neural Information Processing Systems 14, 849–856 (2002)Google Scholar
  6. 6.
    Scott, D.S.: Solving Sparse Symmetric Generalized Eigenvalue without Factorization. SIAM Journal of Numerical Analisys 18, 102–110 (1981), Software available at: http://www.netlib.org/laso/snlaso.f
  7. 7.
    Scott, G.L., Longuet-Higgins, H.C.: Feature Grouping by ”Relocalisation” of Eigenvectors of the Proximity Matrix. In: Proc. British Machine Vision Conf., pp. 103–108 (1990)Google Scholar
  8. 8.
    Shi, J., Malik, J.: Normalized Cuts and Image Segmentation. IEEE Trans. on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)CrossRefGoogle Scholar
  9. 9.
    Weiss, Y.: Segmentation Using Eigenvectors: A Unifying View. In: International Conference on Computer Vision, pp. 975–982 (1999)Google Scholar
  10. 10.
    Wertheimer, M.: Laws of Organization in Perceptual Forms (partial translation). In: Ellis, W.B. (ed.) A Sourcebook of Gestalt Psychology, pp. 71–88 (1938)Google Scholar
  11. 11.
    Wu, Z., Leahy, R.: An Optimal Graph Theoretic Approach to Data Clustering: Theory and its Application to Image Segmentation. IEEE Trans. on Pattern Analysis and Machine Intelligence 15, 1101–1113 (1993)CrossRefGoogle Scholar
  12. 12.
    Yu, S., Shi, J.: Multiclass Spectral Clustering. In: International Conference on Computer Vision, Nice, France, pp. 313–319 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Fernando C. Monteiro
    • 1
    • 2
  • Aurélio C. Campilho
    • 1
    • 3
  1. 1.INEB – Instituto de Engenharia Biomédica 
  2. 2.Escola Superior de Tecnologia e de Gestão de BragançaCampus de Santa ApolóniaBragançaPortugal
  3. 3.FEUP – Faculdade de EngenhariaUniversidade do PortoPortoPortugal

Personalised recommendations