An Analysis of Facial Description in Static Images and Video Streams

  • Modesto Castrillón-Santana
  • Javier Lorenzo-Navarro
  • Daniel Hernández-Sosa
  • Yeray Rodríguez-Domínguez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3522)


This paper describes an analysis performed for facial description in static images and video streams. The still image context is first analyzed in order to decide the optimal classifier configuration for each problem: gender recognition, race classification, and glasses and moustache presence. These results are later applied to significant samples which are automatically extracted in real-time from video streams achieving promising results in the facial description of 70 individuals by means of gender, race and the presence of glasses and moustache.


Support Vector Machine Static Image Video Stream Face Detector Independent Component Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Castrillón Santana, M., Lorenzo Navarro, J., Hernández Sosa, D., Rodríguez-Domínguez, Y.: An analysis of facial description in static images and video streams. In: 2nd Iberian Conference on Pattern Recognition and Image Analysis, Estoril, Portugal (June 2005)Google Scholar
  2. 2.
    Déniz Suárez, O., Castrillón Santana, M., Hernández Tejera, F.M.: Face recognition using independent component analysis and support vector machines. Pattern Recognition Letters 24(13), 2153–2157 (2003)CrossRefGoogle Scholar
  3. 3.
    Gosselin, F., Schyns, P.G.: Bubbles: a technique to reveal the use of information in recognition tasks. Vision Research, 2261–2271 (2001)Google Scholar
  4. 4.
    Jing, Z., Mariani, R.: Glasses detection and extraction by deformable contour. In: International Conference on Pattern Recognition (2000)Google Scholar
  5. 5.
    Kirby, Y., Sirovich, L.: Application of the karhunen-loève procedure for the characterization of human faces. IEEE Trans. on Pattern Analysis and Machine Intelligence 12(1) (July 1990)Google Scholar
  6. 6.
    Lisetti, C.L., Schiano, D.J.: Automatic facial expression interpretation: Where human-computer interaction, artificial intelligence and cognitive science intersect. Pragmatics and Cognition (Special Issue on Facial Information Processing: A Multidisciplinary Perspective) 8(1), 185–235 (2000)Google Scholar
  7. 7.
    Lyons, M.J., Budyneck, J., Akamatsu, S.: Automatic classification of single facial images. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(12), 1357–1362 (1999)CrossRefGoogle Scholar
  8. 8.
    Moghaddam, B., Yang, M.-H.: Learning gender with support faces. IEEE Trans. on Pattern Analysis and Machine Intelligence 24(5), 707–711 (2002)CrossRefGoogle Scholar
  9. 9.
    Pentland, A.: Looking at people: Sensing for ubiquitous and wearable computing. IEEE Trans. on Pattern Analysis and Machine Intelligence (January 2000)Google Scholar
  10. 10.
    Vapnik, V.: The nature of statistical learning theory. Springer, New York (1995)zbMATHGoogle Scholar
  11. 11.
    Viola, P., Jones, M.J.: Rapid object detection using a boosted cascade of simple features. In: Computer Vision and Pattern Recognition (2001)Google Scholar
  12. 12.
    Wu, B., Ai, H., Liu, R.: Glasses detection by boosting simple wavelet features. In: 17th Int. Conf. on Pattern Recognition, Cambridge, UK, August 2004, pp. 292–295 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Modesto Castrillón-Santana
    • 1
  • Javier Lorenzo-Navarro
    • 1
  • Daniel Hernández-Sosa
    • 1
  • Yeray Rodríguez-Domínguez
    • 1
  1. 1.IUSIANI, Edif. Ctral. del Parque Científico TecnológicoUniversidad de Las Palmas de Gran CanariaSpain

Personalised recommendations