Conceptual Schema-Centric Development: A Grand Challenge for Information Systems Research

  • Antoni Olivé
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3520)

Abstract

The goal of automating information systems building was stated in the sixties. Forty years later it is clear that the goal has not been achieved in a satisfactory degree. One of the problems has been the lack of standards in languages and platforms. In this respect, the recent efforts on standardization provide an opportunity to revive the automation goal. This is the main purpose of this paper. We have named the goal “conceptual schema-centric development” (CSCD) in order to emphasize that the conceptual schema should be the center of the development of information systems. We show that to develop an information system it is necessary to define its conceptual schema and that, therefore, the CSCD approach does not place an extra burden on developers. In CSCD, conceptual schemas would be explicit, executable in the production environment and the basis for the system evolution. To achieve the CSCD goal it is necessary to solve many research problems. We identify and comment on a few problems that should be included in a research agenda for CSCD. Finally, we show that the CSCD goal can be qualified as a grand challenge for the information systems research community.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akoka, J., Comyn-Wattiau, I.: Entity-relationship and object-oriented model automatic clustering. Data & Knowledge Engineering 20, 87–117 (1996)CrossRefGoogle Scholar
  2. 2.
    Balzer, R., Cheatham, T.E., Green, C.: Software Technology in the 1990’s: Using a New Paradigm, pp. 16–22. IEEE Computer, Los Alamitos (1983)Google Scholar
  3. 3.
    Banerjee, J., Kim, W., Kim, H.-J., Korth, H.F.: Semantics and Implementation of Schema Evolution in Object-Oriented Databases. In: Proc. ACM SIGMOD 1987, pp. 311–322 (1987)Google Scholar
  4. 4.
    Beck, K.: Extreme Programming Explained. Embrace Change, p. 190. Addison-Wesley, Reading (2000)Google Scholar
  5. 5.
    Beck, K.: Test-Driven Development By Example, p. 220. Addison-Wesley, Reading (2003)Google Scholar
  6. 6.
    Boman, M., Bubenko Jr, J.A., Johannesson, P., Wangler, B.: Conceptual Modelling, p. 269. Prentice-Hall, Englewood Cliffs (1997)Google Scholar
  7. 7.
    BRCommunity.com (eds.): A Brief History of the Business Rule Approach. Business Rules Journal 6(1) (January 2005)Google Scholar
  8. 8.
    Bubenko Jr, J.A.: Information Systems Meyhodology – a Research View. In: Olle, T.W., Sol, H.G., Verrijn-Stuart, A.A. (eds.) Information Systems Design Methodologies: Improving the Practice, pp. 289–318. North-Holland, Amsterdam (1986)Google Scholar
  9. 9.
    Calvanese, D., Lenzerini, M., Nardi, D.: Description Logics for Conceptual Data Modeling. In: Chomicki, J., Saake, G. (eds.) Logics for Databases and Information Systems, pp. 229–263. Kluwer, Dordrecht (1998)Google Scholar
  10. 10.
    Castano, S., de Antonellis, V., Fugini, M.G., Pernici, B.: Conceptual Schema Analysis: Techniques and Applications. ACM TODS 23(3), 286–333 (1998)CrossRefGoogle Scholar
  11. 11.
    Ceri, S., Fraternalli, P., Paraboschi, S., Tanca, L.: Automatic Generation of Production Rules for Integrity Maintenance. ACM TODS 19(3), 367–422 (1994)CrossRefGoogle Scholar
  12. 12.
    Chen, P., Thalheim, B., Wong, L.Y.: Future Directions of Conceptual Modeling. In: Chen, P.P., Akoka, J., Kangassalu, H., Thalheim, B. (eds.) Conceptual Modeling. LNCS, vol. 1565, pp. 287–301. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  13. 13.
    DeRemer, F., Kron, H.: Programming-in-the-Large Versus Programming-in-the-Small. IEEE Trans. Software Eng. 2(2), 80–86 (1976)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Eshuis, R., Jansen, D.N., Wieringa, R.: Requirements-Level Semantics and Model Checking of Object-Oriented Statecharts. Requirements Engineering 7(4), 243–263 (2002)CrossRefGoogle Scholar
  15. 15.
    Evans, E.: Domain-Driven Design. Tackling Complexity in the Heart of Business Software. Addison-Wesley, Reading (2003)Google Scholar
  16. 16.
    Fons, J., Pelechano, V., Albert, M., Pastor, O.: Development of Web Applications from Web Enhanced Conceptual Schemas. In: Song, I.-Y., Liddle, S.W., Ling, T.-W., Scheuermann, P. (eds.) ER 2003. LNCS, vol. 2813, pp. 232–245. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Gogolla, M., Bohling, J., Richters, M.: Validation of UML and OCL Models by Automatic Snapshot Generation. In: Stevens, P., Whittle, J., Booch, G. (eds.) UML 2003. LNCS, vol. 2863, pp. 265–279. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Gómez, C., Olivé, A.: Evolving Derived Entity Types in Conceptual Schemas in the UML. In: Konstantas, D., Léonard, M., Pigneur, Y., Patel, S. (eds.) OOIS 2003. LNCS, vol. 2817, pp. 33–45. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  19. 19.
    Gray, J.: What Next? A Dozen Information-Technology Research Goals. Journal of the ACM 50(1), 41–57 (2003)CrossRefGoogle Scholar
  20. 20.
    Gupta, A., Mumick, I.S.: Materialized Views. Techniques, Implementations and Applications. The MIT Press, Cambridge (1999)Google Scholar
  21. 21.
    Gupta, H., Mumick, I.S.: Selection of Views to Materialize in a Data Warehouse. IEEE Trans on Knowledge and data engineering 17(1), 24–43 (2005)CrossRefGoogle Scholar
  22. 22.
    Gupta, A., Mumick, I.S., Rao, J., Ross, K.A.: Adapting Materialized Views after Redefinitions: Techniques and a Performance Study. Information Systems 26, 323–362 (2001)MATHCrossRefGoogle Scholar
  23. 23.
    Harel, D.: Biting the Silver Bullet. Toward a Brighter Future for System Development. Computer, 8–20 (January 1992)Google Scholar
  24. 24.
    Hick, J.-M., Hainaut, J.-L.: Strategy for database application evolution: The DB-MAIN approach. In: Song, I.-Y., Liddle, S.W., Ling, T.-W., Scheuermann, P. (eds.) ER 2003. LNCS, vol. 2813, pp. 291–306. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  25. 25.
    Hoare, T.: The Verifying Compiler: A Grand Challenge for Computing Research. Journal of the ACM 50(1), 63–69 (2003)CrossRefGoogle Scholar
  26. 26.
    Van Griethuysen, J.J. (ed.): ISO/TC97/SC5/WG3 Concepts and Terminology for the Conceptual Schema and the Information Base (March 1982)Google Scholar
  27. 27.
    Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development Process, p. 463. Addison-Wesley, Reading (1999)Google Scholar
  28. 28.
    Lindland, O.I., Sindre, G., Solvberg, A.: Understanding Quality in Conceptual Modeling. IEEE Software, 42–49 (March 1994)Google Scholar
  29. 29.
    Loucopoulos, P.: Conceptual Modeling. In: Loucopoulos, P., Zicari, R. (eds.) Conceptual Modeling, Databases and CASE: An Integrated View of Information Systems Development, pp. 1–26. Wiley, Chichester (1992)Google Scholar
  30. 30.
    Mayol, E., Teniente, E.: Consistency preserving updates in deductive databases. Data & Knowledge Eng. 47(1), 61–103 (2003)CrossRefGoogle Scholar
  31. 31.
    Mays, R.G.: Forging a silver bullet from the essence of software. IBM Systems Journal 33(1), 20–45 (1994)CrossRefMathSciNetGoogle Scholar
  32. 32.
    Mellor, S.J., Balcer, M.J.: Executable UML. A Foundation for Model-Driven Architecture, p. 368. Addison-Wesley, Reading (2002)Google Scholar
  33. 33.
    Mylopoulos, J.: The Role of Knowledge Representation in the Development of Specifications. In: Proc IFIP 1986, pp. 317–319. North-Holland, Amsterdam (1986)Google Scholar
  34. 34.
    Mylopoulos, J.: Information Modeling in the Time of the Revolution. Information Systems 23(3/4), 127–155 (1998)CrossRefGoogle Scholar
  35. 35.
    Nunamaker, J.F.: A methodology for the design and optimization of information processing systems. In: Proc. Spring Joint Computer Conference, pp. 283–294 (1971)Google Scholar
  36. 36.
    Olivé, A.: Derivation Rules in Object-Oriented Conceptual Modeling Languages. In: Eder, J., Missikoff, M. (eds.) CAiSE 2003. LNCS, vol. 2681, pp. 404–420. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  37. 37.
    Olivé, A.: Integrity Constraints Definition in Object-Oriented Conceptual Modeling Languages. In: Song, I.-Y., Liddle, S.W., Ling, T.-W., Scheuermann, P. (eds.) ER 2003. LNCS, vol. 2813, pp. 349–362. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  38. 38.
    Olivé, A.: On the Role of Conceptual Schemas in Information Systems Development. In: Llamosí, A., Strohmeier, A. (eds.) Ada-Europe 2004. LNCS, vol. 3063, pp. 16–34. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  39. 39.
    Olivé, À.: Definition of Events and Their Effects in Object-Oriented Conceptual Modeling languages. In: Atzeni, P., Chu, W., Lu, H., Zhou, S., Ling, T.-W. (eds.) ER 2004. LNCS, vol. 3288, pp. 136–149. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  40. 40.
    OMG. Model Driven Architecture (MDA). Document number ormsc/2001-07-01 (2001) Google Scholar
  41. 41.
    OMG. MDA Guide Version 1.0.1. OMG Document omg/2003-06-01 (2003) Google Scholar
  42. 42.
    Pastor, O., Gómez, J., Insfrán, E., Pelechano, V.: The OO-method approach for information systems modeling: from object-oriented conceptual modeling to automated programming. Information Systems 26(7), 507–534 (2001)MATHCrossRefGoogle Scholar
  43. 43.
    Rich, C., Waters, R.C.: Automatic Programming: Myths and Prospects. Computer, 40–51 (August 1988)Google Scholar
  44. 44.
    Rolland, C., Prakash, N.: From conceptual modeling to requirements engineering. Annals of Software Engineering 10, 151–176 (2000)MATHCrossRefGoogle Scholar
  45. 45.
    Ross, R.G. (ed.): The Business Rules Manifesto. Business Rules Group. Version 2.0 (November 2003)Google Scholar
  46. 46.
    Ruth, G.R.: Automatic programming: Automating the software system development process. In: Proceedings of the 1977 annual conference, pp. 174–180 (1977)Google Scholar
  47. 47.
    Shoval, P., Danoch, R., Balabam, M.: Hierarchical entity-relationship diagrams: the model, method of creation and experimental evaluation. Requirements Eng. 9, 217–228 (2004)CrossRefGoogle Scholar
  48. 48.
    Sowa, J.F.: Knowledge Representation. Logical, Philosophical and Computational Foundations. Brooks/Cole, 594 p. (2000)Google Scholar
  49. 49.
    Teichroew, D., Sayani, H.: Automation of System Building. Datamation 17(16), 25–30 (1971)Google Scholar
  50. 50.
    Teniente, E., Urpí, T.: On the abductive or deductive nature of database schema validation and update processing problems. Theory and Practice of Logic Programming 3(3), 287–327 (2003)MATHCrossRefMathSciNetGoogle Scholar
  51. 51.
    Thalheim, B.: Entity-Relationship Modeling. In: Foundations of Database Technology, p. 627. Springer, Heidelberg (2000)Google Scholar
  52. 52.
    Türker, C., Gertz, M.: Semantic integrity support in SQL: 1999 and commercial (object-) relational database management systems. The VLDB Journal 10, 241–269 (2001)MATHCrossRefGoogle Scholar
  53. 53.
    Wand, Y., Weber, R.: Research Commentary: Information Systems and Conceptual Modeling – A Research Agenda. Information Systems Research 13(4), 363–376 (2002)CrossRefGoogle Scholar
  54. 54.
    Zhang, Y.: Test-Driven Modeling for Model-Driven Development. IEEE Software, 80–86 (September/October 2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Antoni Olivé
    • 1
  1. 1.Dept. Llenguatges i Sistemes InformàticsUniversitat Politècnica de CatalunyaBarcelona (Catalonia)

Personalised recommendations