Pushing Tougher Constraints in Frequent Pattern Mining

  • Francesco Bonchi
  • Claudio Lucchese
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3518)

Abstract

In this paper we extend the state-of-art of the constraints that can be pushed in a frequent pattern computation. We introduce a new class of tough constraints, namely Loose Anti-monotone constraints, and we deeply characterize them by showing that they are a superclass of convertible anti-monotone constraints (e.g. constraints on average or median) and that they model tougher constraints (e.g. constraints on variance or standard deviation). Then we show how these constraints can be exploited in a level-wise Apriori-like computation by means of a new data-reduction technique: the resulting algorithm outperforms previous proposals for convertible constraints, and it is to treat much tougher constraints with the same effectiveness of easier ones.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules in Large Databases. In: Proceedings of VLDB 1994 (1994)Google Scholar
  2. 2.
    Bonchi, F., Giannotti, F., Mazzanti, A., Pedreschi, D.: Adaptive Constraint Pushing in frequent pattern mining. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) PKDD 2003. LNCS (LNAI), vol. 2838, pp. 47–58. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Bonchi, F., Giannotti, F., Mazzanti, A., Pedreschi, D.: ExAMiner: Optimized level-wise frequent pattern mining with monotone constraints. In: Proceedings of ICDM 2003 (2003)Google Scholar
  4. 4.
    Bonchi, F., Giannotti, F., Mazzanti, A., Pedreschi, D.: ExAnte: Anticipated data reduction in constrained pattern mining. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) PKDD 2003. LNCS, vol. 2838, pp. 47–58. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Bonchi, F., Goethals, B.: FP-Bonsai: the art of growing and pruning small fp-trees. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 155–160. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Bonchi, F., Lucchese, C.: On closed constrained frequent pattern mining. In: Proceedings of ICDM 2004 (2004)Google Scholar
  7. 7.
    Bucila, C., Gehrke, J., Kifer, D., White, W.: DualMiner: A dual-pruning algorithm for itemsets with constraints. In: Proceedings of ACM SIGKDD 2002 (2002)Google Scholar
  8. 8.
    De Raedt, L., Kramer, S.: The levelwise version space algorithm and its application to molecular fragment finding. In: Proceedings of IJCAI 2001 (2001)Google Scholar
  9. 9.
    Grahne, G., Lakshmanan, L., Wang, X.: Efficient mining of constrained correlated sets. In: 16th International Conference on Data Engineering (ICDE 2000), pp. 512–524. IEEE, Los Alamitos (2000)Google Scholar
  10. 10.
    Han, J., Lakshmanan, L.V.S., Ng, R.T.: Constraint-based, multidimensional data mining. Computer 32(8), 46–50 (1999)CrossRefGoogle Scholar
  11. 11.
    Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: Proceedings of ACM SIGMOD 2000 (2000)Google Scholar
  12. 12.
    Jeudy, B., Boulicaut, J.-F.: Optimization of association rule mining queries. Intelligent Data Analysis Journal 6(4), 341–357 (2002)MATHGoogle Scholar
  13. 13.
    Kifer, D., Gehrke, J., Bucila, C., White, W.: How to quicklyfind a witness. In: Proceedings of PODS 2003 (2003)Google Scholar
  14. 14.
    Lakshmanan, L.V.S., Ng, R.T., Han, J., Pang, A.: Optimization of constrained frequent set queries with 2-variable constraints. SIGMOD Record 28(2) (1999)Google Scholar
  15. 15.
    Ng, R.T., Lakshmanan, L.V.S., Han, J., Pang, A.: Exploratory mining and pruning optimizations of constrained associations rules. In: Proceedings of the ACM SIGMOD 1998 (1998)Google Scholar
  16. 16.
    Pei, J., Han, J.: Can we push more constraints into frequent pattern mining? In: Proceedings of ACM SIGKDD 2000 (2000)Google Scholar
  17. 17.
    Pei, J., Han, J., Lakshmanan, L.V.S.: Mining frequent item sets with convertible constraints. In: Proceedings of ICDE 2001 (2001)Google Scholar
  18. 18.
    Srikant, R., Vu, Q., Agrawal, R.: Mining association rules with item constraints. In: Proceedings of ACM SIGKDD 1997 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Francesco Bonchi
    • 1
  • Claudio Lucchese
    • 2
  1. 1.Pisa KDD LaboratoryISTI – C.N.R.Italy
  2. 2.Department of Computer ScienceUniversity Ca’ FoscariVeneziaItaly

Personalised recommendations