A Divide and Conquer Approach for Deriving Partially Ordered Sub-structures

  • S. Ben Yahia
  • Y. Slimani
  • J. Rezgui
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3518)


The steady growth in the size of data has encouraged the emergence of advanced main memory trie-based data structures. Concurrently, more acute knowledge extraction techniques are devised for the discovery of compact and lossless knowledge formally expressed by generic bases. In this paper, we present an approach for deriving generic bases of association rules. Using this approach, we construct small partially ordered sub-structures. Then, these ordered sub-structures are parsed to derive, in a straightforward manner, local generic association bases. Finally, local bases are merged to generate the global one. Extensive experiments carried out essentially showed that the proposed data structure allows to generate a more compact representation of an extraction context comparatively to existing approaches in literature.


Association Rule Minimal Generator Formal Concept Analysis Hasse Diagram Dense Dataset 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Efficient Mining of Association Rules Using Closed Itemset Lattices. Information Systems Journal 24, 25–46 (1999)CrossRefGoogle Scholar
  2. 2.
    Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: Proceedings of the ACM-SIGMOD Intl. Conference on Management of Data (SIGMOD 2000), Dallas, Texas, pp. 1–12 (2000)Google Scholar
  3. 3.
    Cheung, W., Zaiane, O.: Incremental mining of frequent patterns without candidate generation or support constraint. In: Proceedings of the Seventh International Database Engineering and Applications Symposium (IDEAS 2003), Hong Kong, China (2003)Google Scholar
  4. 4.
    Grahne, G., Zhu, J.: Efficiently using prefix-trees in mining frequent itemsets. In: Goethals, B., Zaki, M.J. (eds.) Proceedings of Workshop on Frequent Itemset Mining Implementations (FIMI 2003), Florida, USA. IEEE, Los Alamitos (2003)Google Scholar
  5. 5.
    Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Computing iceberg concept lattices with Titanic. J. on Knowledge and Data Engineering (KDE) 2, 189–222 (2002)CrossRefGoogle Scholar
  6. 6.
    BenYahia, S., Nguifo, E.M.: Approches d’extraction de règles d’association basées sur la correspondance de galois. Ingénierie des Systèmes d’Information (ISI), Hermès-Lavoisier 3–4, 23–55 (2004)CrossRefGoogle Scholar
  7. 7.
    Ganter, B., Wille, R.: Formal Concept Analysis. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  8. 8.
    Pei, J., Han, J., Mao, R., Nishio, S., Tang, S., Yang, D.: Closet: An efficient algorithm for mining frequent closed itemsets. In: Proceedings of the ACM SIGMOD DMKD 2000, Dallas,TX, pp. 21–30 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • S. Ben Yahia
    • 1
  • Y. Slimani
    • 1
  • J. Rezgui
    • 1
  1. 1.Département des Sciences de l’InformatiqueFaculté des Sciences de TunisTunisTunisie

Personalised recommendations