On the Feasibility of Gathering by Autonomous Mobile Robots

  • Giuseppe Prencipe
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3499)


Given a set of n autonomous mobile robots that can freely move on a two dimensional plane, they are required to gather in a position of the plane not fixed in advance (Gathering Problem). The main research question we address in this paper is: under which conditions this task can be accomplished by the robots? The studied robots are quite simple: they are anonymous, totally asynchronous, they do not have any memory of past computations, they cannot explicitly communicate among each other. We show that this simple task cannot be in general accomplished by the considered system of robots.


Mobile Robots Multiplicity Detection Distributed Coordination Distributed Models Computability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agmon, N., Peleg, D.: Fault Tolerant Gathering Algorithms for Autonomous Mobile Robots. In: Proc. 15th Symposium on Discrete Algorithms (SODA 2004), pp. 1063–1071 (2004)Google Scholar
  2. 2.
    Ando, H., Oasa, Y., Suzuki, I., Yamashita, M.: A Distributed Memoryless Point Convergence Algorithm for Mobile Robots with Limited Visibility. IEEE Transactions on Robotics and Automation 15(5), 818–828 (1999)CrossRefGoogle Scholar
  3. 3.
    Cieliebak, M.: Gathering non-oblivious mobile robots. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol. 2976, pp. 577–588. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Solving The Gathering Problem. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1181–1196. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Cieliebak, M., Prencipe, G.: Gathering Autonomous Mobile Robots. In: Proc. of 9th International Colloquium on Structural Information And Communication Complexity (SIROCCO 9), June 2002, pp. 57–72 (2002)Google Scholar
  6. 6.
    Cohen, R., Peleg, D.: Robot Convergence via Center-of-gravity Algorithms. In: Proc. 11th International Colloquium On Structural Information And Communication Complexity (SIROCCO 11), pp. 79–88 (2004)Google Scholar
  7. 7.
    Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Hard Tasks for Weak Robots: The Role of Common Knowledge in Pattern Formation by Autonomous Mobile Robots. In: Aggarwal, A.K., Pandu Rangan, C. (eds.) ISAAC 1999. LNCS, vol. 1741, pp. 93–102. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of Autonomous Mobile Robots With Limited Visibility. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 247–258. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Prencipe, G.: The Effect of Synchronicity on the Behavior of Autonomous Mobile Robots. In: Theory of Computing Systems (2004) (accepted for publication)Google Scholar
  10. 10.
    Suzuki, I., Yamashita, M.: Distributed Anonymous Mobile Robots: Formation of Geometric Patterns. SIAM Journal of Computing 28(4), 1347–1363 (1999)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Giuseppe Prencipe
    • 1
  1. 1.Dipartimento di InformaticaPisaItaly

Personalised recommendations