Computing Valuation Popov Forms

  • Mark Giesbrecht
  • George Labahn
  • Yang Zhang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3516)

Abstract

Popov forms and weak Popov forms of matrices over noncommutative valuation domains are defined and discussed. Two new algorithms to construct these Popov forms are given, along with a description of some of their applications.

References

  1. 1.
    Abramov, S., Bronstein, M.: Linear Algebra for skew-polynomial matrices. INRIA (preprint)Google Scholar
  2. 2.
    Artin, E.: Geometric Algebra. Interscience Publishers, Inc., Hoboken (1957)MATHGoogle Scholar
  3. 3.
    Beckermann, B., Cheng, H., Labahn, G.: Fraction-free row reduction of matrices of Ore polynomials. In: Proceedings of ISSAC 2002, pp. 8–15. ACM Press, New York (2002)CrossRefGoogle Scholar
  4. 4.
    Beckermann, B., Labahn, G., Villard, G.: Shifted Normal Forms of Polynomial Matrices. In: Proceedings of ISSAC 1999, pp. 189–196. ACM Press, New York (1999)CrossRefGoogle Scholar
  5. 5.
    Cohn, P.M.: Skew Fields. Cambridge University Press, Cambridge (1995)MATHGoogle Scholar
  6. 6.
    Giesbrecht, M., Labahn, G., Zhang, Y.: Popov forms for multivariate polynomial matrices (preprint)Google Scholar
  7. 7.
    Jacobson, N.: The Theory of Rings. American Math. Soc., New York (1943)MATHGoogle Scholar
  8. 8.
    Kailath, T.: Linear Systems. Prentice-Hall, Englewood Cliffs (1980)MATHGoogle Scholar
  9. 9.
    Mulders, T., Storjohann, A.: On lattice reduction for polynomial matrices. Journal of Symbolic Computation 35, 377–401 (2003)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Ore, O.: Theory of non-commutative polynomials. Annals of Mathematics 34(22), 480–508 (1933)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Popov, V.: Invariant description of linear, time-invariant controllable systems. SIAM J. Control. 10(2), 252–264 (1972)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Schilling, O.: The Theory of Valuations. Math. Surveys No. IV. Amer. Math. Soc., New York (1950)Google Scholar
  13. 13.
    Villard, G.: Computing Popov and Hermite forms of polynomial matrices. In: Proceeding of ISSAC 1996, pp. 250–258. ACM Press, New York (1996)CrossRefGoogle Scholar
  14. 14.
    von zur Gathen, J.: Hensel and Newton methods in valuation rings. Mathematics of Computation 42, 637–661 (1984)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Mark Giesbrecht
    • 1
  • George Labahn
    • 1
  • Yang Zhang
    • 2
  1. 1.School of Computer ScienceUniversity of WaterlooWaterlooCanada
  2. 2.Dept. of Mathematics and Computer ScienceBrandon UniversityBrandonCanada

Personalised recommendations