Advertisement

A Grid-Based Bridging Domain Multiple-Scale Method for Computational Nanotechnology

  • Shaowen Wang
  • Shaoping Xiao
  • Jun Ni
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3516)

Abstract

This paper presents an application-level Grid middleware framework to support a bridging domain multi-scale method fornumerical modeling and simulation in nanotechnology. The framework considers a multiple-length-scale model by designing specific domain-decomposition and communication algorithms based on Grid computing. The framework is designed to enable researchers to conductlarge-scale computing in computational nanotechnology through the use of Grid resources for exploring microscopic physical properties of materials without losing details of nanoscale physical phenomena.

Keywords

Grid Resource Grid Information Service Information Broker Linear Finite Element Method Trial Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Rountree, C.L., Kalia, R.K., Lidorikis, E., Nakano, A., Van, B.L., Vashishta, P.: Atomistic aspects of crack propagation in brittle materials: Multimillion atom molecular dynamics simulation. Annual Review of Materials Research 32, 377–400 (2002)CrossRefGoogle Scholar
  2. 2.
    Abraham, F.F., Walkup, R., Gao, H., Duchaineau, M., Rubia, T.D., Seager, M.: Simulating materials failure by using up to one billion atoms and the world’s fastest computer: brittle fracture. Proceedings of the National Academy of Science of the United States of America 99(9), 5777–5782 (2002)CrossRefGoogle Scholar
  3. 3.
    Muralidharan, K., Deymier, P.A., Simmons, J.H.: A concurrent multiscale finite difference time domain/molecular dynamics method for bridging an elastic continuum to an atomic system. Modelling and Simulation in Materials Science and Engineering 11(4), 487–501 (2003)CrossRefGoogle Scholar
  4. 4.
    Xiao, S.P., Belytschko, T.: A bridging domain method for coupling continua with molecular dynamics. Computer Methods in Applied Mechanics and Engineering 193, 1645–1669 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Foster, I., Kesselman, C.: The Grid: Blue Print for a New Computing Infrastructure. Morgan Kaufmann Publishers, Inc., San Francisco (1999)Google Scholar
  6. 6.
    Foster, I.: The Grid: A new infrastructure for 21st century science. Physics Today, 42–47 (February 2003)Google Scholar
  7. 7.
    Berman, F., Fox, G., Hey, T.: The Grid, past, present, future, Grid Computing, Making the Global Infrastructure a Reality. In: Berman, R., Fox, G., Hey, T. (eds.). John Wiley & Sons, West Sussex (2003)Google Scholar
  8. 8.
    Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: enabling scalable virtual organizations. International Journal Supercomputer Applications 15(3) (2002)Google Scholar
  9. 9.
    Belytschko, T., Liu, W.K., Moran, B.: Nonlinear Finite Elements for Continua and Structures. Wiley, New York (2000)zbMATHGoogle Scholar
  10. 10.
    Belytschko, T., Parimi, C., Moës, N., Sukumar, N., Usui, S.: Structured extended finite element methods for solids defined by implicit surfaces. International Journal for Numerical Methods in Engineering 56, 609–635 (2003)zbMATHCrossRefGoogle Scholar
  11. 11.
    Tadmor, E.B., Ortiz, M., Phillips, R.: Quasicontinuum analysis of defects in solids. Philosophy Magazine A 73, 1529–1563 (1996)CrossRefGoogle Scholar
  12. 12.
    Wang, S., Padmanabhan, A., Liu, Y., Briggs, R., Ni, J., He, T., Knosp, B.M., Onel, Y.: A multi-agent system framework for end-user level Grid monitoring using geographical information systems (MAGGIS): architecture and implementation. In: Li, M., Sun, X.-H., Deng, Q.-n., Ni, J. (eds.) GCC 2003. LNCS, vol. 3032, pp. 536–543. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Braun, T.D., Siegel, H.J., Beck, N., Boloni, L.L., Maheswaran, M., Reuther, A.I., Robertson, J.P., Theys, M.D., Yao, B., Hensgen, D., Freund, R.F.: A comparison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous distributed computing systems. Journal of Parallel and Distributed Computing 61, 810–837 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Shaowen Wang
    • 1
  • Shaoping Xiao
    • 2
    • 3
  • Jun Ni
    • 1
    • 2
    • 4
  1. 1.Academic Technology – Research Service, Information Technology ServicesThe University of IowaIowa cityUSA
  2. 2.Department of Mechanical and Industrial EngineeringThe University of IowaIowa cityUSA
  3. 3.Center for Computer-Aided DesignThe University of IowaIowa cityUSA
  4. 4.Department of Computer ScienceThe University of IowaIowa cityUSA

Personalised recommendations