Numerical Simulation of Three-Dimensional Vertically Aligned Quantum Dot Array

  • Weichung Wang
  • Tsung-Min Hwang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3516)


We study the electronic properties of quantum dot arrays formed by 2 to 12 vertically aligned quantum dots numerically. Numerical schemes in grid points choosing, finite differences, matrix reduction, and large-scale eigenvalue problem solver are discussed. The schemes allow us to compute all the desired energy states and the wave functions efficiently. Numerical experiment results are presented.


Semiconductor quantum dot array the Schrödinger equation energy levels wave function numerical simulation 


  1. 1.
    Voskoboynikov, O., Lee, C.P., Tretyak, O.: Spin-orbit splitting in semiconductor quantum dots with a parabolic confinement potential. Phys. Rev. B 63, 165306 (2001)CrossRefGoogle Scholar
  2. 2.
    BenDaniel, D.J., Duke, C.B.: Space-charge effects on electron tunnelling. Phys. Rev. 152(683) (1966)Google Scholar
  3. 3.
    Lai, M.-C.: A note on finite difference discretizations for Poisson equation on a disk. Numer. Methods Partial Differ. Equ. 17(3), 199–203 (2001)zbMATHCrossRefGoogle Scholar
  4. 4.
    Wang, W., Hwang, T.-M., Lin, W.-W., Liu, J.-L.: Numerical Methods for Semiconductor Heterostructures with Band Nonparabolicity. Journal of Computational Physics 190(1), 141–158 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Hwang, T.-M., Lin, W.-W., Liu, J.-L., Wang, W.: Jacobi–davidson methods for cubic eigenvalue problems. Numerical Linear Algebra with Applications (to appear)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Weichung Wang
    • 1
  • Tsung-Min Hwang
    • 2
  1. 1.Department of Applied MathematicsNational University of KaohsiungKaohsiungTaiwan
  2. 2.Department of MathematicsNational Taiwan Normal UniversityTaipeiTaiwan

Personalised recommendations