Advertisement

Towards Dynamic Data-Driven Optimization of Oil Well Placement

  • Manish Parashar
  • Vincent Matossian
  • Wolfgang Bangerth
  • Hector Klie
  • Benjamin Rutt
  • Tahsin Kurc
  • Umit Catalyurek
  • Joel Saltz
  • Mary F. Wheeler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3515)

Abstract

The adequate location of wells in oil and environmental applications has a significant economical impact on reservoir management. However, the determination of optimal well locations is both challenging and computationally expensive. The overall goal of this research is to use the emerging Grid infrastructure to realize an autonomic dynamic data-driven self-optimizing reservoir framework. In this paper, we present the use of distributed data to dynamically drive the optimization of well placement in an oil reservoir.

Keywords

Reservoir Simulator Grid Service Reservoir Management Significant Economical Impact Open Grid Service Architecture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bittencourt, A.C., Horne, R.N.: Reservoir development and design optimization. In: SPE Annual Technical Conference and Exhibition, San Antonio, Texas (1997) SPE 38895Google Scholar
  2. 2.
    Guyaguler, B., Horne, R.N.: Uncertainty assessment of well placement optimization. In: SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana (2001) SPE 71625Google Scholar
  3. 3.
    Pan, Y., Horne, R.: Improved methods for multivariate optimization of field development scheduling and well placement design. In: SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana (1998) SPE 49055Google Scholar
  4. 4.
    Yeten, B., Durlofsky, L.J., Aziz, K.: Optimization of nonconventional well type, location, and trajectory. SPE Journal 8, 200–210 (2003) SPE 86880Google Scholar
  5. 5.
    Foster, I., Kesselman, C.: The Grid 2: Blueprint for a New Computing Infrastructure. Morgan Kaufmann, San Francisco (2004)Google Scholar
  6. 6.
    Parashar, M., Klie, H., Catalyurek, U., Kurc, T., Matossian, V., Saltz, J., Wheeler, M.: Application of grid-enabled technologies for solving optimization problems in data-driven reservoir studies. The International Journal of Grid Computing: Theory, Methods and Applications (FGCS) 21, 19–26 (2005)Google Scholar
  7. 7.
    Matossian, V., Bhat, V., Parashar, M., Peszynska, M., Sen, M., Stoffa, P., Wheeler, M.F.: Autonomic oil reservoir optimization on the grid. Concurrency and Computation: Practice and Experience 17, 1–26 (2005)CrossRefGoogle Scholar
  8. 8.
    Bangerth, W., Klie, H., Matossian, V., Parashar, M., Wheeler, M.F.: An autonomic reservoir framework for the stochastic optimization of well placement. Cluster Computing: The Journal of Networks, Software Tools, and Applications (2004) (to appear)Google Scholar
  9. 9.
    IPARS: Integrated Parallel Reservoir Simulator, The University of Texas at Austin, http://www.ices.utexas.edu/CSM
  10. 10.
    Sen, M., Stoffa, P.: Global Optimization Methods in Geophysical Inversion. In: Berkhout, A.J. (ed.) Advances in Exploration Geophysics 4. Elsevier, Amsterdam (1995)Google Scholar
  11. 11.
    Spall, J.C.: Introduction to stochastic search and optimization, estimation, simulation and control. John Wiley & Sons, Inc., Publication, New Jersey (2003)MATHCrossRefGoogle Scholar
  12. 12.
    Bangerth, W., Klie, H., Wheeler, M.F., Stoffa, P.L., Sen, M.K.: On optimization algorithms for the reservoir oil well placement problem. Comp. Geosc. (2004) (submitted)Google Scholar
  13. 13.
    Open Grid Services Architecture Data Access and Integration, http://www.ogsadai.org.uk
  14. 14.
    Hastings, S., Langella, S., Oster, S., Saltz, J.: Distributed data management and integration: The mobius project. In: GGF Semantic Grid Workshop 2004, pp. 20–38 (2004)Google Scholar
  15. 15.
    Li, X., Agrawal, G.: Using xquery for flat-file based scientific datasets. In: The 9th International Workshop on Data Base Programming Languages, DBPL (2003)Google Scholar
  16. 16.
    Narayanan, S., Kurc, T., Catalyurek, U., Zhang, X., Saltz, J.: Applying database support for large scale data driven science in distributed environments. In: Proceedings of the Fourth International Workshop on Grid Computing (Grid 2003), Phoenix, Arizona, pp. 141–148 (2003)Google Scholar
  17. 17.
    Weng, L., Agrawal, G., Catalyurek, U., Kurc, T., Narayanan, S., Saltz, J.: An approach for automatic data virtualization. In: The Thirteenth IEEE International Symposium on High-Performance Distributed Computing, HPDC-13 (2004)Google Scholar
  18. 18.
    Agarwal, M., Bhat, V., Li, Z., Liu, H., Matossian, V., Putty, V., Schmidt, C., Zhang, G., Parashar, M., Khargharia, B., Hariri, S.: Automate: Enabling autonomic applications on the grid. In: Autonomic Computing Workshop, The Fifth Annual International Workshop on Active Middleware Services (AMS 2003), Seattle, WA USA, pp. 365–375 (2003)Google Scholar
  19. 19.
    Mann, V., Parashar, M.: Discover: A computational collaboratory for interactive grid applications. In: Berman, F., Fox, G., Hey, T. (eds.) Grid Computing: Making the Global Infrastructure a Reality, pp. 727–744. John Wiley & Sons, Chichester (2003)Google Scholar
  20. 20.
    Parashar, M., von Laszewski, G., Verma, S., Gawor, J., Keahey, K., Rehn, N.: A CORBA Commodity Grid Kit. Concurrency and Computations: Practice and Experience 14, 1057–1074 (2002)MATHCrossRefGoogle Scholar
  21. 21.
    Matossian, V., Parashar, M.: Enabling peer-to-peer interactions for scientific applications on the grid. In: Kosch, H., Böszörményi, L., Hellwagner, H. (eds.) Euro-Par 2003. LNCS, vol. 2790, pp. 1240–1247. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  22. 22.
    Muralidhar, R., Parashar, M.: A Distributed Object Infrastructure for Interaction and Steering. Special Issue - Euro-Par 2001, Concurrency and Computation: Practice and Experience 15, 957–977 (2003)CrossRefGoogle Scholar
  23. 23.
    Liu, H., Parashar, M.: Dios++: A framework for rule-based autonomic management of distributed scientific applications. In: Kosch, H., Böszörményi, L., Hellwagner, H. (eds.) Euro-Par 2003. LNCS, vol. 2790, pp. 66–73. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  24. 24.
    Matossian, V., Parashar, M.: Autonomic optimization of an oil reservoir using decentralized services. In: Proceedings of the 1st International Workshop on The Challenges for Large Applications in Distributed Environments (CLADE 2003), pp. 2–9. Computer Society Press (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Manish Parashar
    • 1
  • Vincent Matossian
    • 1
  • Wolfgang Bangerth
    • 2
    • 4
  • Hector Klie
    • 2
  • Benjamin Rutt
    • 3
  • Tahsin Kurc
    • 3
  • Umit Catalyurek
    • 3
  • Joel Saltz
    • 3
  • Mary F. Wheeler
    • 2
  1. 1.TASSL, Dept. of Electrical & Computer EngineeringThe State University of New JerseyRutgersUSA
  2. 2.CSM, ICESThe University of Texas at AustinUSA
  3. 3.Dept. of Biomedical InformaticsThe Ohio State UniversityUSA
  4. 4.Institute for GeophysicsThe University of Texas at AustinUSA

Personalised recommendations