Advertisement

Dynamic Data Driven Methodologies for Multiphysics System Modeling and Simulation

  • J. Michopoulos
  • C. Farhat
  • E. Houstis
  • P. Tsompanopoulou
  • H. Zhang
  • T. Gullaud
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3515)

Abstract

We are presenting a progress overview associated with our work on a data-driven environment for multiphysics applications (DDEMA). In this paper, we emphasize the dynamic-data-driven adaptive modeling and simulation aspects. Adaptive simulation examples of sensor-originating data-driven precomputed solution synthesis are given for two applications. Finally, some of the computational implementation details are presented.

Keywords

Reduce Order Model Fire Dynamic Simulator Solution Synthesis Computational Implementation Behavioral Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Michopoulos, J., Tsompanopoulou, P., Houstis, E., Rice, J., Farhat, C., Lesoinne, M., Lechenault, F.: DDEMA: A Data Driven Environment for Multiphysics Applications. In: Sloot, P.M.A., Abramson, D., Bogdanov, A.V., Gorbachev, Y.E., Dongarra, J., Zomaya, A.Y. (eds.) ICCS 2003. LNCS, vol. 2660, pp. 309–318. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Michopoulos, J., Tsompanopoulou, P., Houstis, E., Farhat, C., Lesoinne, M., Rice, J., Joshi, A.: On a Data Driven Environment for Multiphysics Applications. Future Generation Computer Systems (2005) (in print)Google Scholar
  3. 3.
    Michopoulos, J., Tsompanopoulou, P., Houstis, E., Joshi, A.: Agent-based Simulation of Data-Driven Fire Propagation Dynamics. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3038, pp. 732–739. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Farhat, C., Chandesris, M.: Time-Decomposed Parallel Time-Integrators: Theory and Feasibility Studies for Fluid, Structure, and Fluid-Structure Applications, Internat. J. Numer. Meths., Engrg. 58, 1397–1434 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Lieu, T., Lesoinne, M.: Parameter Adaptation of Reduced Order Models for Three-Dimensional Flutter Analysis. In: 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV (2004)Google Scholar
  6. 6.
    Michopoulos, J., Farhat, C., Houstis, E.: Dynamic-Data-Driven Real-Time Computational Mechanics Environment. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3038, pp. 693–700. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Michopoulos, J.G.: Mechatronically Automated Characterization of Material Constitutive Response. In: Proceedings of the 6th World Congress on Computational Mechanics (WCCM-VI), Beijing China, September 5-10, pp. 486–491. Tsinghua University Press and Springer (2004)Google Scholar
  8. 8.
    Michopoulos, J.G., Mast, P.W., Badaliance, R., Wolock, I.: Health Monitoring of smart structures by the use of dissipated energy. In: Carman, G.P., Garcia, E. (eds.) ASME Proc. 1993 WAM on Adaptive structures and material systems, AD-vol. 35, pp. 457–462 (1993)Google Scholar
  9. 9.
    Yates, E.: AGARD Standard Aeroelastic Configuration for Dynamic Response, Candidate Configuration I. – Wing 445.6, NASA TM-100492 (1987)Google Scholar
  10. 10.
    Michopoulos, J., Badaliance, R., Chwastyk, T., Gause, L., Mast, P., Farhat, C., Lesoinne, M.: Material Softening Issues. In: A Multiphysics Virtual Wind Tunnel Environment, AIAA 2002-1095, proceedings of the 2002 AIAA conference at Reno Nevada, January 14-17, vol. 2 (2002)Google Scholar
  11. 11.
    McGrattan, K.B., Baum, H.R., Rehm, R.G., Hamins, A., Forney, G.P.: Fire Dynamics Simulator - Technical Reference Guide, National Institute of Standards and Technology, Gaithersburg, MD., NISTIR 6467 (2000)Google Scholar
  12. 12.
    Farhat, C., Geuzaine, P., Brown, G.: Application of a Three-Field Nonlinear Fluid-Structure Formulation to the Prediction of the Aeroelastic Parameters of an F-16 Fighter. Computers and Fluids 32, 3–29 (2003)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • J. Michopoulos
    • 1
  • C. Farhat
    • 2
  • E. Houstis
    • 3
    • 4
  • P. Tsompanopoulou
    • 4
  • H. Zhang
    • 3
  • T. Gullaud
    • 2
  1. 1.Code 6390, Special Projects GroupU.S. Naval Research LaboratoryU.S.A
  2. 2.Dept. of Mechanical EngineeringStanford UniversityU.S.A
  3. 3.Computer Sciences Dept. & Electrical and Computer Engineering Dept.Purdue UniversityU.S.A
  4. 4.Dept. of Comp. Eng. and TelecommunicationsUniversity of ThessalyGreece

Personalised recommendations