MC Slicing for Volume Rendering Applications

  • A. Benassarou
  • E. Bittar
  • N. W. John
  • L. Lucas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3515)

Abstract

Recent developments in volume visualization using standard graphics hardware provide an effective and interactive way to understand and interpret the data. Mainly based on 3d texture mapping, these hardware-accelerated visualization systems often use a cell-projection method based on a tetrahedral decomposition of volumes usually sampled as a regular lattice. On the contrary, the method we address in this paper considers the slicing problem as a restricted solution of the marching cubes algorithm [1,2]. Our solution is thus simple, elegant and fast. The nature of the intersection polygons provides us with the opportunity to retain only 4 of the 15 canonical configurations defined by Lorensen and Cline and to propose a special look-up table.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wyvill, B., Wyvill, G., McPheeters, C.: Data structure for soft objects. The Visual Computer 2, 227–234 (1986)Google Scholar
  2. 2.
    Lorensen, W., Cline, H.: Marching cubes : a high resolution 3D surface construction algorithm. Computer Graphics 21, 163–169 (1987)CrossRefGoogle Scholar
  3. 3.
    Brodlie, K., Wood, J.: Recent advances in visualization of volumetric data. In: Proc. Eurographics 2000 - STAR Reports, pp. 65–84 (2000)Google Scholar
  4. 4.
    Engel, K., Ertl, T.: High-quality volume rendering with flexible consumer graphics hardware. In: Proc. Eurographics 2002 - STAR Reports (2002)Google Scholar
  5. 5.
    Roettger, S., Guthe, S., Weiskopf, D., Ertl, T., Strasser, W.: Smart hardware accelerated volume rendering. In: Proc. Eurographics/IEEE TCVG Symposium on Visualization, pp. 231–238 (2003)Google Scholar
  6. 6.
    Westermann, R., Ertl, T.: Efficiently using graphics hardware in volume rendering applications. Computer Graphics 32, 169–179 (1998)Google Scholar
  7. 7.
    Levoy, M.: Display of surfaces from volume data. IEEE Computer Graphics and Applications 8, 29–37 (1988)CrossRefGoogle Scholar
  8. 8.
    Westover, L.: Footprint evaluation for volume rendering. Computer Graphics 24 (1991)Google Scholar
  9. 9.
    Lacroute, P., Levoy, M.: Fast volume rendering using a shear-warp factorization of the viewing transformation. Computer Graphics 28, 451–458 (1994)Google Scholar
  10. 10.
    Shirley, P., Tuchman, A.: A polygonal approximation to direct scalar volume rendering. Computer Graphics 24, 63–70 (1990)CrossRefGoogle Scholar
  11. 11.
    Stein, C., Becker, B., Max, N.: Sorting and hardware assisted rendering for volume visualization. In: Proc. ACM Symposium on Volume Visualization, pp. 83–90 (1994)Google Scholar
  12. 12.
    Yagel, R., Reed, D., Law, A., Shih, P., Shareef, N.: Hardware assisted volume rendering of unstructured grids by incremental slicing. In: Proc. ACM Symposium on Volume Visualization 1996, pp. 55–63 (1996)Google Scholar
  13. 13.
    LaMar, E., Hamann, B., Joy, K.: Multiresolution techniques for interactive texture-based volume visualization. In: Proc. ACM Symposium on Volume Visualization 1999, pp. 355–361 (1999)Google Scholar
  14. 14.
    Chopra, P., Meyer, J.: Incremental slicing revisited: Accelerated volume rendering of unstructured meshes. In: Proc. IASTED Visualization, Imaging and Image Processing 2002, pp. 533–538 (2002)Google Scholar
  15. 15.
    Lensch, H., Daubert, K., Seidel, H.: Interactive semi-transparent volumetric textures. In: Proc. Vision, Modeling and Visualization 2002, pp. 505–512 (2002)Google Scholar
  16. 16.
    Cabral, B., Cam, N., Foran, J.: Accelerated volume rendering and tomographic reconstruction using texture mapping hardware. In: Proc. ACM Symposium on Volume Visualization 1994, pp. 91–98 (1994)Google Scholar
  17. 17.
    Kniss, J., Kindlmann, G., Hansen, C.: Interactive volume rendering using multi-dimensional transfer functions and direct manipulation widgets. In: Proc. Visualization 2001, pp. 255–262 (2001)Google Scholar
  18. 18.
    Moret, B., Shapiro, H.: Algorithms from P to NP. Design and Efficiency, vol. I. Benjamin-Cummings (1991)Google Scholar
  19. 19.
    Healey, A., Evans, J., Murphy, M., Gould, D., Phillips, R., Ward, J., John, N., Brodlie, K., Bulpit, A., Chalmers, N., Groves, D., Hatfield, F., How, T., Diaz, B., Farrell, M., Kessel, D., Bello, F.: Challenges realising effective radiological interventional virtual environments: the CRaIVE approach. In: Proc. Medicine meets Virtual Reality, pp. 127–129. IOS Press, Amsterdam (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • A. Benassarou
    • 1
  • E. Bittar
    • 1
  • N. W. John
    • 2
  • L. Lucas
    • 1
  1. 1.CReSTIC / LERI / MADSUniversité de Reims Champagne-ArdenneReimsFrance
  2. 2.School of InformaticsUniversity of WalesBangorUnited Kingdom

Personalised recommendations