Optimal Group Testing Strktegies with Interval Queries and Their Application to Splice Site Detection

  • Ferdinando Cicalese
  • Peter Damaschke
  • Ugo Vaccaro
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3515)


The classical Group Testing Problem is: Given a finite set of items {1, 2, ... , n} and an unknown subset P ⊆ {1, 2, ..., n} of up to p positive elements, identify P by asking the least number of queries of the type “does the subset Q ⊆ {0, 2,..., n} intersect P?”. In our case, Q must be a subset of consecutive elements. This problem naturally arises in several scenarios, most notably in Computational Biology. We focus on algorithms in which queries are arranged in stages: in each stage, queries can be performed in parallel, and be chosen depending on the answers to queries in previous stages. Algorithms that operate in few stages are usually preferred in practice. First we study the case p = 1 comprehensively. For two-stage strategies for arbitrary p we obtain asymptotically tight bounds on the number of queries. Furthermore we prove bounds for any number of stages and positives, and we discuss the problem with the restriction that query intervals have some bounded length d.


  1. 1.
    Cicalese, F., Damaschke, P., Vaccaro, U.: Optimal Group Testing Strategies with Interval Queries and Their Application to Splice Site Detection, Technical Report 2004-04, Universität Bielefeld, Technische Fakultät, Available at
  2. 2.
    Cormode, G., Muthukrishnan, S.: What’s hot and what’s not: Tracking most frequent items dynamically. In: ACM Principles of Database Systems (2003)Google Scholar
  3. 3.
    Cox, L.A., Sun, X., Qiu, Y.: Optimal and Heuristic Search for a Hidden Object in one Dimension. In: Proc. of IEEE Conf. on System, Man, and Cybernetics, pp. 1252–1256 (1994)Google Scholar
  4. 4.
    De Bonis, A., Gasieniec, L., Vaccaro, U.: Generalized Framework for Selectors with Applications in Optimal Group Testing. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 81–96. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Du, D.Z., Hwang, F.K.: Combinatorial Group Testing and its Applications. World Scientific, Singapore (2000)zbMATHGoogle Scholar
  6. 6.
    Farach, M., Kannan, S., Knill, E.H., Muthukrishnan, S.: Group Testing with Sequences in Experimental Molecular Biology. In: Carpentieri, B., De Santis, A., Vaccaro, U., Storer, J. (eds.) Proc. of Compression and Complexity of Sequences 1997, pp. 357–367. IEEE CS Press, Los Alamitos (1997)Google Scholar
  7. 7.
    Hong, E.H., Ladner, R.E.: Group testing for image compression. IEEE Transactions on Image Processing 11(8), 901–911 (2002)CrossRefGoogle Scholar
  8. 8.
    Karp, R.: ISIT 1998 Plenary Lecture Report: Variations on the theme of ‘Twenty Questions’. IEEE Information Theory Society Newsletter 49(1) (March 1999)Google Scholar
  9. 9.
    Knill, E.: Lower Bounds for Identifying Subset Members with Subset Queries. In: Proceedings of Symposium on Discrete Algorithms 1995 (SODA 1995), pp. 369–377 (1995)Google Scholar
  10. 10.
    Ngo, H.Q., Du, D.-Z.: A survey on combinatorial group testing algorithms with applications to DNA library screening. In: Discrete Mathematical Problems with Medical Applications. DIMACS Series Discrete Math. Theoret. Computer Science, vol. 55, Amer. Math. Soc., pp. 171–182 (2000)Google Scholar
  11. 11.
    Pevzner, P.A.: Computational Molecular Biology, An Algorithmic Approach. MIT Press, Cambridge (2000)zbMATHGoogle Scholar
  12. 12.
    Wolf, J.: Born again group testing: Multiaccess communications. IEEE Trans. Information Theory IT-31, 185-191 (1985)Google Scholar
  13. 13.
    Xu, G., Sze, S.H., Liu, C.P., Pevzner, P.A., Arnheim, N.: Gene hunting without sequencing genomic clones: Finding exon boundaries in cDNAs. Genomics 47, 171–179 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Ferdinando Cicalese
    • 1
  • Peter Damaschke
    • 2
  • Ugo Vaccaro
    • 3
  1. 1.Institut für Bioinformatik, Centrum für Biotechnologie (CeBiTec)Universität BielefeldBielefeldGermany
  2. 2.School of Computer Science and EngineeringChalmers UniversityGöteborgSweden
  3. 3.Università di SalernoBaronissiItaly

Personalised recommendations