Advertisement

Vectorized Sparse Matrix Multiply for Compressed Row Storage Format

  • Eduardo F. D’Azevedo
  • Mark R. Fahey
  • Richard T. Mills
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3514)

Abstract

The innovation of this work is a simple vectorizable algorithm for performing sparse matrix vector multiply in compressed sparse row (CSR) storage format. Unlike the vectorizable jagged diagonal format (JAD), this algorithm requires no data rearrangement and can be easily adapted to a sophisticated library framework such as PETSc. Numerical experiments on the Cray X1 show an order of magnitude improvement over the non-vectorized algorithm.

Keywords

Sparse Matrix Point Stencil Vector Processor Permutation Vector Theoretical Peak Performance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Balay, S., Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Smith, B.F., Zhang, H.: PETSc users manual. Technical Report ANL-95/11 - Revision 2.2.0, Argonne National Laboratory (2004), See also http://www.mcs.anl.gov/petsc
  2. 2.
    Nakajima, K., Okuda, H.: Parallel iterative solvers for finite-element methods using a hybrid programming model on SMP cluster architectures. Technical Report GeoFEM 2003-003, RIST, Tokyo (2003), See also http://geofem.tokyo.rist.or.jp/members/nakajima
  3. 3.
    Blelloch, G.E., Heroux, M.A., Zagha, M.: Segmented operations for sparse matrix computation on vector multiprocessors. Technical Report CMU-CS-93-173, Department of Computer Science, Carnegie Mellon University (1993), See also http://www-2.cs.cmu.edu/~guyb/publications.html
  4. 4.
    Dongarra, J.J., Duff, I.S., Sorensen, D.C., van der Vorst, H.A.: Solving Linear Systems on Vector and Shared Memory Computers. SIAM, Philadelphia (1991)Google Scholar
  5. 5.
    Dongarra, J.J., Duff, I.S., Sorensen, D.C., van der Vorst, H.: Numerical Linear Algebra for High-Performance Computers. SIAM, Philadelphia (1998)zbMATHCrossRefGoogle Scholar
  6. 6.
    Duff, I.S., Erisman, A.M., Reid, J.K.: Direct Methods for Sparse Matrices. Clarendon Press, Oxford (1986)zbMATHGoogle Scholar
  7. 7.
    Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003), See also http://www-users.cs.umn.edu/~saad/books.html
  8. 8.
    Kincaid, D.R., Young, D.M.: The ITPACK project: Past, present and future. In: Birkhoff, G., Schoernstadt, A. (eds.) Elliptic Problem Solvers II Proc., pp. 53–64 (1983)Google Scholar
  9. 9.
    Peters, A.: Sparse matrix vector multiplication techniques on the IBM 3090 VF. Parallel Computing 17, 1409–1424 (1991)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Eduardo F. D’Azevedo
    • 1
  • Mark R. Fahey
    • 2
  • Richard T. Mills
    • 2
  1. 1.Computer Science and Mathematics DivisionOak Ridge National LaboratoryOak RidgeUSA
  2. 2.Center for Computational SciencesOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations