The Deflation Accelerated Schwarz Method for CFD

  • J. Verkaik
  • C. Vuik
  • B. D. Paarhuis
  • A. Twerda
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3514)


Accurate simulation of glass melting furnaces requires the solution of very large linear algebraic systems of equations. To solve these equations efficiently a Schwarz domain decomposition (multi-block) method can be used. However, it can be observed that the convergence of the Schwarz method deteriorates when a large number of subdomains is used. This is due to small eigenvalues arising from the domain decomposition which slow down the convergence. Recently, a deflation approach was proposed to solve this problem using constant approximate eigenvectors. This paper generalizes this view to piecewise linear vectors and results for two CFD problems are presented. It can be observed that the number of iterations and wall clock time decrease considerably. The reason for this is that the norm of the initial residual is much smaller and the rate of convergence is higher.


efficiency computational fluid dynamics domain decomposition deflation Krylov subspace acceleration 


  1. 1.
    Ferziger, J.H., Perić, M.: Computational Methods for Fluid Dynamics, 2nd edn. Springer, Heidelberg (1999)MATHGoogle Scholar
  2. 2.
    Kaasschieter, E.F.: Preconditioned conjugate gradients for solving singular systems. J. Comp. Applied Math. 41, 265–275 (1988)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Mansfield, L.: On the conjugate gradient solution of the Schur complement system obtained from domain decomposition. SIAM J. Numer. Anal. 7(6), 1612–1620 (1990)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Nabben, R., Vuik, C.: A comparison of deflation and coarse grid correction applied to porous media flow. Report 03-10, Delft University of Technology, Department of Applied Mathematical Analysis, Delft (2003)Google Scholar
  5. 5.
    Nicolaides, R.A.: Deflation of conjugate gradients with applications to boundary value problems. SIAM J. Numer. Anal. 24(2), 355–365 (1987)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Patankar, S.V.: Numerical Heat Transfer and Fluid Flow. McGraw-Hill, New York (1980)MATHGoogle Scholar
  7. 7.
    Stone, H.L.: Iterative solution of implicit approximations of multi-dimensional partial differential equations. SIAM J. Numer. Anal. 5, 530–558 (1968)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    van der Vorst, H.A.: Iterative Krylov Methods for Large Linear systems. Cambridge University Press, Cambridge (2003)MATHCrossRefGoogle Scholar
  9. 9.
    Vermolen, F., Vuik, C., Segal, A.: Deflation in preconditioned conjugate gradient methods for finite element problems. In: Křižek, M., Neittaanmäki, P., Glowinski, R., Korotov, S. (eds.) Conjugate Gradient and Finite Element Methods, pp. 103–129. Springer, Berlin (2004)Google Scholar
  10. 10.
    Verweij, R.L.: Parallel Computing for furnace simulations using domain decomposition. PhD thesis, Delft University of Technology, DelftGoogle Scholar
  11. 11.
    Vuik, C., Frank, J.: Coarse grid acceleration of a parallel block preconditioner. Future Generation Computer Systems 17, 933–940 (2001)MATHCrossRefGoogle Scholar
  12. 12.
    Wesseling, P.: Principles of Computational Fluid Dynamics. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • J. Verkaik
    • 1
  • C. Vuik
    • 2
  • B. D. Paarhuis
    • 1
  • A. Twerda
    • 1
  1. 1.TNO Science and IndustryDelftThe Netherlands
  2. 2.Faculty of Electrical Engineering, Mathematics and Computer ScienceDelft University of TechnologyDelftThe Netherlands

Personalised recommendations