Combining Data-Driven Systems for Improving Named Entity Recognition

  • Zornitsa Kozareva
  • Oscar Ferrández
  • Andres Montoyo
  • Rafael Muñoz
  • Armando Suárez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3513)

Abstract

The increasing flow of digital information requires the extraction, filtering and classification of pertinent information from large volumes of texts. An important preprocessing tool of these tasks consists of name entities recognition, which corresponds to a Name Entity Recognition (NER) task. In this paper we propose a completely automatic NER which involves identification of proper names in texts, and classification into a set of predefined categories of interest as Person names, Organizations (companies, government organizations, committees, etc.) and Locations (cities, countries, rivers, etc). We examined the differences in language models learned by different data-driven systems performing the same NLP tasks and how they can be exploited to yield a higher accuracy than the best individual system. Three NE classifiers (Hidden Markov Models, Maximum Entropy and Memory-based learner) are trained on the same corpus data and after comparison their outputs are combined using voting strategy. Results are encouraging since 98.5% accuracy for recognition and 84.94% accuracy for classification of NE for Spanish language were achieved.

References

  1. 1.
    Arevalo, M., Civit, M., Mart’ı, M.A.: MICE: A module for Named Entity Recognition and Clasification. International Journal of Corpus Linguistics 9(1), 53–68 (2004)CrossRefGoogle Scholar
  2. 2.
    Carreras, X., Màrques, L., Padró, L.: Named entity extraction using adaboost. In: Proceedings of CoNLL-2002, Taipei, Taiwan, pp. 167–170 (2002)Google Scholar
  3. 3.
    Daelemans, W., Zavrel, J., van der Sloot, K., van den Bosch, A.: TiMBL: Tilburg Memory-Based Learner. Technical Report ILK 03-10, Tilburg University (November 2003)Google Scholar
  4. 4.
    Florian, R., Ittycheriah, A., Jing, H., Zhang, T.: Named entity recognition through classifier combination. In: Daelemans, W., Osborne, M. (eds.) Proceedings of CoNLL-2003, Edmonton, Canada, pp. 168–171 (2003)Google Scholar
  5. 5.
    Mayfield, J., McNamee, P., Piatko, C.: Named entity recognition using hundreds of thousands of features. In: Daelemans, W., Osborne, M. (eds.) Proceedings of CoNLL-2003, Edmonton, Canada, pp. 184–187 (2003)Google Scholar
  6. 6.
    Maynard, D., Tablan, V., Ursu, C., Cunningham, H., Wilks, Y.: Named Entity Recognition from Diverse Text Types. In: Mitkov, R., Nicolov, N., Angelova, G., Bontcheva, K., Nikolov, N. (eds.) Proceedings of the Recent Advances in Natural Language Processing, Tzigov Chark (2001)Google Scholar
  7. 7.
    Ratnaparkhi, A.: Maximum Entropy Models For Natural Language Ambiguity Resolution. PhD thesis, Computer and Information Science Department, University of Pennsylvania (1998) Google Scholar
  8. 8.
    Sang, T.K.: Introduction to the conll-2002 shared task: Language independent named entity recognition. In: Proceedings of CoNLL-2002, pp. 155–158 (2002)Google Scholar
  9. 9.
    Schröder, I.: A case study in part-of-speech tagging using the icopost toolkit. Technical Report FBI-HH-M-314/02, Department of Computer Science, University of Hamburg (2002)Google Scholar
  10. 10.
    Suárez, A., Palomar, M.: A maximum entropy-based word sense disambiguation system. In: Chen, H.-H., Lin, C.-Y. (eds.) Proceedings of the 19th International Conference on Computational Linguistics, COLING 2002, August 2002, pp. 960–966 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Zornitsa Kozareva
    • 1
  • Oscar Ferrández
    • 1
  • Andres Montoyo
    • 1
  • Rafael Muñoz
    • 1
  • Armando Suárez
    • 1
  1. 1.Departamento de Lenguajes y Sistemas InformáticosUniversidad de Alicante 

Personalised recommendations