Robust Locality-Aware Lookup Networks

  • Ittai Abraham
  • Dahlia Malkhi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3460)


Overlay networks that aim to share information are complex due to numerous factors including scale, decentralization, dynamism, and failures. Deploying, operating and maintaining such overlays can be not only very difficult, but also very costly. In this paper we show how a dynamic overlay can be built and maintained in a cost efficient manner while achieving strong locality properties in a decentralized, dynamic, and faulty environment. In our approach there is no central entity that configures, organizes, and repairs the system. To the contrary, we show that if each peer performs local cost efficient operations then by combining the joint effort of all peers the network manages, configures, and repairs itself.


Fault Tolerance Node Degree Overlay Network Distribute Hash Table Close Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abraham, I., Gavoille, C., Malkhi, D.: Routing with improved communication-space trade-off. In: Guerraoui, R. (ed.) DISC 2004. LNCS, vol. 3274, pp. 305–319. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Abraham, I., Gavoille, C., Malkhi, D., Nisan, N., Thorup, M.: Compact name-independent routing with minimum stretch. In: The Sixteenth ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2004 (2004)Google Scholar
  3. 3.
    Abraham, I., Malkhi, D., Dobzinski, O.: LAND: Stretch (1 + ε) locality aware networks for DHTs. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, SODA 2004 (2004)Google Scholar
  4. 4.
    Arias, M., Cowen, L.J., Laing, K.A., Rajaraman, R., Taka, O.: Compact routing with name independence. In: Proceedings of the fifteenth annual ACM symposium on Parallel algorithms and architectures, pp. 184–192. ACM Press, New York (2003)CrossRefGoogle Scholar
  5. 5.
    Awerbuch, B., Bar-Noy, A., Linial, N., Peleg, D.: Compact distributed data structures for adaptive routing. In: Proceedings of the twenty-first annual ACM symposium on Theory of computing, pp. 479–489. ACM Press, New York (1989)CrossRefGoogle Scholar
  6. 6.
    Awerbuch, B., Peleg, D.: Sparse partitions. In: Proceedings of the 31st IEEE Symposium on Foundations of Computer Science (FOCS), pp. 503–513 (1990)Google Scholar
  7. 7.
    Awerbuch, B., Peleg, D.: Routing with polynomial communication-space trade-off. SIAM J. Discret. Math. 5(2), 151–162 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Gavoille, C., Gengler, M.: Space-efficiency of routing schemes of stretch factor three. Journal of Parallel and Distributed Computing 61, 679–687 (2001)zbMATHCrossRefGoogle Scholar
  9. 9.
    Goal, A., Zhang, H., Govindan, R.: Incrementally improving lookup latency in distributed hash table systems. In: ACM Sigmetrics (2003)Google Scholar
  10. 10.
    Gummadi, K., Gummadi, R., Gribble, S., Ratnasamy, S., Shenker, S., Stoica, I.: The impact of DHT routing geometry on resilience and proximity. In: Proceedings of the 2003 conference on Applications, technologies, architectures, and protocols for computer communications, pp. 381–394. ACM Press, New York (2003)CrossRefGoogle Scholar
  11. 11.
    Gummadi, K.P., Dunn, R.J., Saroiu, S., Gribble, S.D., Levy, H.M., Zahorjan, J.: Measurement, modeling, and analysis of a peer-to-peer file-sharing workload. In: Proceedings of the nineteenth ACM symposium on Operating systems principles, pp. 314–329. ACM Press, New York (2003)CrossRefGoogle Scholar
  12. 12.
    Hildrum, K., Kubiatowicz, J.: Asymptotically efficient approaches to fault-tolerance in peer-to-peer networks. In: Fich, F.E. (ed.) DISC 2003. LNCS, vol. 2848, pp. 321–336. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Hildrum, K., Kubiatowicz, J.D., Rao, S., Zhao, B.Y.: Distributed object location in a dynamic network. In: Proceedings of the Fourteenth ACM Symposium on Parallel Algorithms and Architectures, August 2002, pp. 41–52 (2002)Google Scholar
  14. 14.
    Li, X., Plaxton, C.G.: On name resolution in peer-to-peer networks. In: Proceedings of the 2nd ACM Worskhop on Principles of Mobile Commerce (POMC), pp. 82–89 (October 2002)Google Scholar
  15. 15.
    Lynch, N., Malkhi, D., Ratajczak, D.: Atomic data access in distributed hash tables. In: Proceedings of the International Peer-to-Peer Symposium (2002)Google Scholar
  16. 16.
    Malkhi, D., Naor, M., Ratajczak, D.: Viceroy: A scalable and dynamic emulation of the butterfly. In: Proceedings of the 21st ACM Symposium on Principles of Distributed Computing (PODC 2002), pp. 183–192 (2002)Google Scholar
  17. 17.
    Naor, M., Wieder, U.: A simple fault tolerant distributed hash table. In: Kaashoek, M.F., Stoica, I. (eds.) IPTPS 2003. LNCS, vol. 2735, pp. 88–97. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Plaxton, C., Rajaraman, R., Richa, A.: Accessing nearby copies of replicated objects in a distributed environment. In: Proceedings of the Ninth Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA 1997), pp. 311–320 (1997)Google Scholar
  19. 19.
    Rowstron, A., Druschel, P.: Pastry: Scalable, distributed object location and routing for large-scale peer-to-peer systems. In: IFIP/ACM International Conference on Distributed Systems Platforms (Middleware), pp. 329–350 (2001)Google Scholar
  20. 20.
    Saia, J., Fiat, A., Gribble, S., Karlin, A.R., Saroiu, S.: Dynamically fault-tolerant content addressable networks. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS 2002. LNCS, vol. 2429, p. 270. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  21. 21.
    Thorup, M., Zwick, U.: Compact routing schemes. In: Proceedings of the thirteenth annual ACM symposium on Parallel algorithms and architectures, pp. 1–10. ACM Press, New York (2001)CrossRefGoogle Scholar
  22. 22.
    Zhao, B.Y., Huang, L., Stribling, J., Rhea, S.C., Joseph, A.D., Kubiatowicz, J.: Tapestry: A resilient global-scale overlay for service deployment. IEEE Journal on Selected Areas in Communications (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Ittai Abraham
    • 1
  • Dahlia Malkhi
    • 1
    • 2
  1. 1.School of Computer Science and EngineeringThe Hebrew University of JerusalemJerusalemIsrael
  2. 2.Microsoft ResearchSilicon Valley

Personalised recommendations