Advertisement

Parasitic Mobility for Pervasive Sensor Networks

  • Mathew Laibowitz
  • Joseph A. Paradiso
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3468)

Abstract

Distributed sensor networks offer many new capabilities for contextually monitoring environments. By making such systems mobile, we increase the application-space for the distributed network mainly by providing dynamic context-dependent deployment, continual relocatability, automatic node recovery, and a larger area of coverage. In existing models, the addition of actuation to the nodes has exacerbated three of the main problems with distributed systems: power usage, node size, and node complexity. In this paper we propose a solution to these problems in the form of parasitically actuated nodes that harvest their mobility and local navigational intelligence by selectively engaging and disengaging from mobile hosts in their environment. We analyze the performance of parasitically mobile distributed networks through software simulations and design, implement, and demonstrate hardware prototypes.

Keywords

Sensor Network Sensor Node Wireless Sensor Network Mobile Node Active Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Meguerdichian, S., Slijepcevic, S., Karayan, V., Potkonjak, M.: Localized algorithms in wireless ad-hoc networks: location discovery and sensor exposure. In: MOBIHOC 2001. Proceedings of the 2001 ACM International Symposium on Mobile Ad Hoc Networking and Computing, p. 106. ACM, Long Beach (2001)CrossRefGoogle Scholar
  2. 2.
    Estrin, D., Cerpa, A.: ASCENT: Adaptive Self-Configuring sEnsor Networks Topologies. IEEE Transactions on Mobilke Comuting Secial Issue on Mission-Oriented Sensor Networks 3(3) (July-August 2004)Google Scholar
  3. 3.
    Grabowski, R., Navarro-Serment, L.E., Khosla, P.K.: Small is beautiful: an army of small robots. Scientific American (International Edition), vol. 289(5), p. 42 (2003)Google Scholar
  4. 4.
    Howard, A., Mataric, M.J., Sukhatme, G.S.: An incremental self-deployment algorithm for mobile sensor networks. Autonomous Robots 13(2), 113 (2002)zbMATHCrossRefGoogle Scholar
  5. 5.
    LaMarca, A., Brunette, W., Koizumi, D., Lease, M., Sigurdsson, S.B., Sikorski, K., Fox, D., Borriello, G.: Making sensor networks practical with robots. In: Mattern, F., Naghshineh, M. (eds.) PERVASIVE 2002. LNCS, vol. 2414, p. 152. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Sinha, A., Chandrakasan, A.: Dynamic power management in wireless sensor networks. IEEE Design & Test of Computers 18(2), 62 (2001)CrossRefGoogle Scholar
  7. 7.
    Rahimi, M., Shah, H., Sukhatme, G.S., Heideman, J., Estrin, D.: Studying the feasibility of energy harvesting in a mobile sensor network. In: 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422), p. 19. IEEE, Taipei (2003)CrossRefGoogle Scholar
  8. 8.
    Chee-Yee, C., Kumar, S.P.: Sensor networks: evolution, opportunities, andchallenges. Proceedings of the IEEE 91(8), 1247 (2003)CrossRefGoogle Scholar
  9. 9.
    Kahn, J.M., Katz, R.H., Pister, K.S.: Next century challenges: mobile networking for ”Smart Dust”. In: MobiCom 1999. Proceedings of Fifth Annual ACM/IEEE International Conference on Mobile Computing and Networking, p. 271. ACM, Seattle (1999)Google Scholar
  10. 10.
    Warneke, B., Atwood, B., Pister, K.S.J.: Smart dust mote forerunners. In: Technical Digest. MEMS 2001.14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090), p. 357. IEEE, Interlaken (2001)CrossRefGoogle Scholar
  11. 11.
    Hill, J.: Spec takes the next step toward the vision of true smart dust (2003), http://www.jlhlabs.com/jhill_cs/
  12. 12.
    O’Flynn, B., et al.: The development of a Modular Miniaturised Platform for Wireless Sensor Networks. To appear in the Proc. of the Fourth International Conference on Information Processing in Sensor Networks (IPSN 2005), Los Angeles, CA, April 25-27 (2005)Google Scholar
  13. 13.
    Paradiso, J.A., Starner, T.: Energy Scavenging for Mobile and Wireless Electronics. IEEE Pervasive Computing 4(1), 18–27 (2005)CrossRefGoogle Scholar
  14. 14.
    Rahimi, M., Pon, R., Kaiser, W.J., Sukhatme, G.S., Estrin, D., Srivastava., M.: Adaptive Sampling for Environmental Robots. In: Proceedings of the 2004 IEEE International Conference on Robotics and Automation, New Orleans, LA, April 2004, pp. 3537–3544 (2004)Google Scholar
  15. 15.
    Benbasat, A.Y., Paradiso, J.A.: Design of a Real-Time Adaptive Power Optimal Sensor System. In: The Proc. of the 2004 IEEE Sensors Conference, Vienna, Austria, October 24–27 (2004)Google Scholar
  16. 16.
    Pon, R., et al.: Networked Infomechanical Systems: A Mobile Wireless Sensor Network Platform. To appear in the Proc. of the Fourth International Conference on Information Processing in Sensor Networks (IPSN 2005), Los Angeles, CA, April 25-27 (2005)Google Scholar
  17. 17.
    Houston, K.M., Engebretson, K.R.: The Intelligent Sonobuoy System – A Concept for Mapping of Target Fields. In: The Proceedings of the Autonomous Vehicles and Mine Counter-Measures Symposium, April 4-7, pp. 6–129. Naval Post-Graduate School, Monterey (1995)Google Scholar
  18. 18.
    Irish, J.D., Paul, W.0., Shaumeyer, J.N., Gaither III, C.C., Borden, J.M.: The Next-Generation Ocean Observing Buoy in Support of NASA’s Earth Science Enterprise. Sea Technology, May 1999, vol. 40, pp. 37–43 (1999)Google Scholar
  19. 19.
    Kerzhanovich, V.V., Cutts, J.A., Hall, J.L.: Low-cost balloon missions to mars and venus. In: European Space Agency(Special Publication) ESA SP, p. 285 (2003)Google Scholar
  20. 20.
    Bush, A.O., Fernandez, J.C., Esch, G.W., Seed, J.R.: Parasitism: The Diversity and Ecology of Animal Parasites, pp. 391–399. Cambridge University Press, Cambridge (2001)Google Scholar
  21. 21.
    Ibid., pp. 160–196Google Scholar
  22. 22.
    Ibid., pp. 306–310Google Scholar
  23. 23.
    Ibid., pp. 6–9Google Scholar
  24. 24.
    Matthies, L., Xiong, Y., Hogg, R., Zhu, D., Rankin, A., Kennedy, B., Hebert, M., Maclachlan, R., Won, C., Frost, T., Sukhatme, G., McHenry, M., Goldberg, S.: A portable, autonomous, urban reconnaissance robot. Robotics and Autonomous Systems 40(2-3), 163 (2002)CrossRefGoogle Scholar
  25. 25.
    Sibley, G.T., Rahimi, M.H., Sukhatme, G.S.: Robomote: a tiny mobile robot platform for large-scale ad-hoc sensor networks. In: Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292), p. 1143. IEEE, Washington (2002)CrossRefGoogle Scholar
  26. 26.
    Laibowitz, M.: Parasitic Mobility for Sensate Media. Thesis, MIT Media Lab (August 2004)Google Scholar
  27. 27.
    Hightower, J., Borriello, G.: Location systems for ubiquitous computing. IEEE Computer 34(8), 57 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Mathew Laibowitz
    • 1
  • Joseph A. Paradiso
    • 1
  1. 1.MIT Media LaboratoryCambridge

Personalised recommendations