Advertisement

The Rough Set Exploration System

  • Jan G. Bazan
  • Marcin Szczuka
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3400)

Abstract

This article gives an overview of the Rough Set Exploration System (RSES). RSES is a freely available software system toolset for data exploration, classification support and knowledge discovery. The main functionalities of this software system are presented along with a brief explanation of the algorithmic methods used by RSES. Many of the RSES methods have originated from rough set theory introduced by Zdzisław Pawlak during the early 1980s.

Keywords

Decision Rule Hide Neuron Decision Table Decomposition Tree Decision Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N. (eds.): RSCTC 2002. LNCS (LNAI), vol. 2475. Springer, Heidelberg (2002)MATHGoogle Scholar
  2. 2.
    Bazan, J.: A Comparison of Dynamic and non-Dynamic Rough Set Methods for Extracting Laws from Decision Tables. In: Skowron, A., Polkowski, L. (eds.) Rough Sets in Knowledge Discovery 1, pp. 321–365. Physica-Verlag, Heidelberg (1998)Google Scholar
  3. 3.
    Bazan, J., Nguyen, H.S., Nguyen, S.H., Synak, P., Wróblewski, J.: Rough set algorithms in classification problem. In: Polkowski, L., Tsumoto, S., Lin, T.Y. (eds.) Rough Set Methods and Applications, pp. 49–88. Physica-Verlag, Heidelberg (2000)Google Scholar
  4. 4.
    Bazan, J., Nguyen, H.S., Nguyen, T.T., Skowron, A., Stepaniuk, J.: Decision rules synthesis for object classification. In: Orłowska, E. (ed.) Incomplete Information: Rough Set Analysis, pp. 23–57. Physica - Verlag, Heidelberg (1998)Google Scholar
  5. 5.
    Bazan, J.G., Skowron, A., Ślęzak, D., Wróblewski, J.: Searching for the complex decision reducts: The case study of the survival analysis. In: Zhong, N., Raś, Z.W., Tsumoto, S., Suzuki, E. (eds.) ISMIS 2003. LNCS (LNAI), vol. 2871, pp. 160–168. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Domingos, P.: Unifying Instance-Based and Rule-Based Induction. Machine Learning 24(2), 141–168 (1996)MathSciNetGoogle Scholar
  7. 7.
    Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. Wiley, New York (1973)MATHGoogle Scholar
  8. 8.
    Góra, G., Wojna, A.G.: RIONA: a New Classification System Combining Rule Induction and Instance-Based Learning. Fundamenta Informaticae 51(4), 369–390 (2002)MATHMathSciNetGoogle Scholar
  9. 9.
    Grzymała-Busse, J.: A New Version of the Rule Induction System LERS. Fundamenta Informaticae 31(1), 27–39 (1997)MATHGoogle Scholar
  10. 10.
    Grzymała-Busse, J., Hu, M.: A comparison of several approaches to missing attribute values in data mining. In: Ziarko, W.P., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 378–385. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Hippe, M.: Towards the classification of musical works: A rough set approach. In: [1], pp. 546–553Google Scholar
  12. 12.
    Komorowski, J., Øhrn, A., Skowron, A.: ROSETTA Rough Sets. In: Kloesgen, W., Zytkow, J. (eds.) Handbook of KDD, pp. 554–559. Oxford University Press, Oxford (2002)Google Scholar
  13. 13.
    Komorowski, J., Pawlak, Z., Polkowski, L., Skowron, A.: Rough Sets: A tutorial. In: Pal, S.K., Skowron, A. (eds.) Rough Fuzzy Hybridization, pp. 3–98. Springer, Singapore (1999)Google Scholar
  14. 14.
    Kostek, B., Szczuko, P., Zwan, P.: Processing of musical data employing rough sets and artificial neural networks. In: Tsumoto, S., Slowinski, R., Komorowski, J., Grzymala-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 539–548. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Lazareck, L., Ramanna, S.: Classification of swallowing sound signals: A rough set approach. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 679–684. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Hoa, N.S.: Data regularity analysis and applications in data mining. Ph. D. Thesis, Department of Math., Comp. Sci. and Mechanics. Warsaw University, Warsaw (1999)Google Scholar
  17. 17.
    Nguyen, S.H., Nguyen, H.S.: Discretization Methods in Data Mining. In: Skowron, A., Polkowski, L. (eds.) Rough Sets in Knowledge Discovery 1, pp. 451–482. Physica Verlag, Heidelberg (1998)Google Scholar
  18. 18.
    Nguyen, S.H., Skowron, A., Synak, P.: Discovery of data patterns with applications to decomposition and classfification problems. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery 2, pp. 55–97. Physica-Verlag, Heidelberg (1998)Google Scholar
  19. 19.
    Michie, D., Spiegelhalter, D.J., Taylor, C.C.: Machine Learning. In: Neural and Statistical Classification, Ellis Horwood, London (1994)Google Scholar
  20. 20.
    Pawlak, Z.: Rough sets. International J. Comp. Inform. Science 11, 341–356 (1982)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Pawlak, Z.: Rough sets and decision tables. LNCS, vol. 208, pp. 186–196. Springer, Berlin (1985)Google Scholar
  22. 22.
    Pawlak, Z.: On rough dependency of attributes in information systems. Bulletin of the Polish Academy of Sciences 33, 551–599 (1985)MATHMathSciNetGoogle Scholar
  23. 23.
    Pawlak, Z.: On decision tables. Bulletin of the Polish Academy of Sciences 34, 553–572 (1986)Google Scholar
  24. 24.
    Pawlak, Z.: Decision tables – a rough set approach. Bulletin of EATCS 33, 85–96 (1987)MATHGoogle Scholar
  25. 25.
    Pawlak, Z., Skowron, A.: Rough membership functions. In: Yager, R., et al. (eds.) Advances in Dempster Shafer Theory of Evidence, pp. 251–271. Wiley, N.Y (1994)Google Scholar
  26. 26.
    Pawlak, Z.: In pursuit of patterns in data reasoning from data – the rough set way. In: [1], pp. 1–9 (2002)Google Scholar
  27. 27.
    Pawlak, Z.: Rough sets and decision algorithms. In: [39], pp. 30–45 (2001)Google Scholar
  28. 28.
    Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer, Dordrecht (1991)MATHGoogle Scholar
  29. 29.
    Peters, J.F., Ramanna, S.: Towards a software change classification system. Software Quality Journal 11(2), 121–148 (2003)CrossRefGoogle Scholar
  30. 30.
    Skowron, A., Rauszer, C.: The discernibility matrices and functions in information systems. In: Slowinski, R. (ed.) Intelligent Decision Support: Handbook of Applications and Advances in Rough Set Theory, pp. 259–300. Kluwer Academic Publishers, Dordrecht (1992)Google Scholar
  31. 31.
    Skowron, A., Polkowski, L.: Synthesis of decision systems from data tables. In: Lin, T.Y., Cercone, N. (eds.) Rough Sets and Data Mining: Analysis for Imprecise Data, pp. 331–362. Kluwer Academic Publishers, Dordrecht (1997)Google Scholar
  32. 32.
    Skowron, A.: Rough Sets in KDD (plenary talk). 16-th World Computer Congress (IFIP’2000). In: Shi, Z., Faltings, B., Musen, M. (eds.) Proceedings of Conference on Intelligent Information Processing (IIP2000), pp. 1–17. Publishing House of Electronic Industry, Beijing (2000)Google Scholar
  33. 33.
    Ślęzak, D., Wróblewski, J.: Classification algorithms based on linear combinations of features. In: Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI), vol. 1704, pp. 548–553. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  34. 34.
    Valdés, J.J., Barton, A.J.: Gene discovery in leukemia revisited: A computational intelligence perspective. In: Orchard, B., Yang, C., Ali, M. (eds.) IEA/AIE 2004. LNCS (LNAI), vol. 3029, pp. 118–127. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  35. 35.
    Wojna, A.G.: Center-Based Indexing in Vector and Metric Spaces. Fundamenta Informaticae 56(3), 285–310 (2003)MATHMathSciNetGoogle Scholar
  36. 36.
    Wojnarski, M.: LTF-C: Architecture, Training Algorithm and Applications of New Neural Classifier. Fundamenta Informaticae 54(1), 89–105 (2003)MATHMathSciNetGoogle Scholar
  37. 37.
    Wróblewski, J.: Genetic algorithms in decomposition and classification problem. In: Skowron, A., Polkowski, L. (eds.) Rough Sets in Knowledge Discovery 1, pp. 471–487. Physica Verlag, Heidelberg (1998)Google Scholar
  38. 38.
    Wróblewski, J.: Covering with Reducts - A Fast Algorithm for Rule Generation. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, pp. 402–407. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  39. 39.
    Ziarko, W.P., Yao, Y. (eds.): RSCTC 2000. LNCS (LNAI), vol. 2005. Springer, Heidelberg (2001)Google Scholar
  40. 40.
  41. 41.
    Report from EUNITE World competition in domain of Intelligent Technologies, http://www.eunite.org/eunite/events/eunite2002/competitionreport2002.htm
  42. 42.
    The ROSETTA Homepage, http://rosetta.lcb.uu.se/general/
  43. 43.

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Jan G. Bazan
    • 1
  • Marcin Szczuka
    • 2
  1. 1.Institute of MathematicsUniversity of RzeszówRzeszówPoland
  2. 2.Institute of MathematicsWarsaw UniversityWarsawPoland

Personalised recommendations