Sequential Extraction Algorithm for BSS Without Error Accumulation

  • Qiang Liu
  • Tianping Chen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3497)


Blind source separation (BSS) is an emerging research field in both theory and applications. In this paper we propose a kurtosis maximization algorithm–Sequential Extraction Algorithm, which can extract the source signals sequentially. This approach is based on an algorithm for separating one signal (Algorithm 1) and some technique to eliminate the accumulating errors, which often occur in the sequential extraction steps. In Algorithm 1, a new criterion to judge whether the separated signal is an original source signal, is proposed. In Sequential Extraction Algorithm, we propose a new approach to eliminate accumulating errors, which is caused in the sequential extraction process. This approach is based on the cost function involved in this algorithm, and thus, is different from those available in literature.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ding, Z., Nguyen, T.: Stationary Points of Kurtosis Maximization Algorithm for Blind Signal Separation and Antenna Beamforming. IEEE Trans. Signal Processing 48, 1587–1596 (2000)CrossRefGoogle Scholar
  2. 2.
    Cardoso, J.: Source Separation Using Higher Order Moment. In: Proc. ICASSP, pp. 2109–2112 (1983)Google Scholar
  3. 3.
    Tong, L., Soon, V., Huang, Y., Liu, R.: AMUSE: A New Blind Identification Algorithm. In: Proc. ICASSP, pp. 1784–1787 (1990)Google Scholar
  4. 4.
    Cao, X., Liu, R.: General Approach to Blind Source Separation. IEEE Trans. Signal Processing 44, 562–571 (1996)CrossRefGoogle Scholar
  5. 5.
    Stoica, P., Viberg, M.: Maximum Likelihood Parameter and Rank Estimation in Reduced-rank Multivariate Linear Regressions. IEEE Trans. Signal Processing 44, 3069–3078 (1996)CrossRefGoogle Scholar
  6. 6.
    Belouchrani, A., Abed-Meraim, K., Cardoso, J., Moulines, E.: A Blind Source Separation Technique Using Second-order Statistics. IEEE Trans. Signal Processing 45, 434–444 (1997)CrossRefGoogle Scholar
  7. 7.
    Shalvi, O., Weinstein, E.: New Criteria for Blind Deconvolution of Nonminimum Phase Systems(channels). IEEE Trans. Inform. Theory 36, 312–321 (1990)CrossRefMATHGoogle Scholar
  8. 8.
    Ding, Z., Nguyen, T.: Signal Separation and Extraction via Kurtosis Maximization. In: Proc. IEEE Workshop Digital Signal Process, Bryce Canyon, UT (1998)Google Scholar
  9. 9.
    Kung, S.: Independent Signal Analysis in Hybrid Mixture: KuicNet Learning Algorithm and Numerical Analysis. In: Proc. Int. Symp. Multimedia Inform. Process, Taipei, Taiwan, China, pp. 368–381 (1997)Google Scholar
  10. 10.
    Pham, D.: Blind Separation of Instantaneous Mixture of Sources Based on Order Statistics. IEEE Trans. Signal Processing 48, 363–375 (2000)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Amari, S., Chen, T., Cichocki, A.: Stability Analysis of Learning Algorithms for Blind Source Separation. Neural Network 10, 1345–1351 (1997)CrossRefGoogle Scholar
  12. 12.
    Amari, S., Chen, T., Cichocki, A.: Nonholonomic Orthogonal Learning Algorithms for Blind Source Separation. Neural Computation 12, 1463–1482 (2000)CrossRefGoogle Scholar
  13. 13.
    Boscolo, R., Pan, H., Roychowdhurg, V.: Independent Signal Analysis Based on Nonparametric Density Estimation. IEEE Trans. Neural Networks 15, 55–65 (2004)CrossRefGoogle Scholar
  14. 14.
    Chen, T., Amari, S., Lin, Q.: A Unified Algorithm for Principal and Minor Signals Extraction. Neural Networks 11, 385–390 (1998)CrossRefGoogle Scholar
  15. 15.
    Douglas, S., Amari, S., Kung, S.: Gradient Adaptation under Unit-norm Constraints. In: Proc. IEEE Workshop Stat. Signal Array Processing, Portland, OR, pp. 144–147 (1998)Google Scholar
  16. 16.
    Amari, S., Cichocki, A., Yang, H.: A New Learning Algorithm for Blind Signal Separation. In: Proc. Sys. 8th Adv. Neural Inform, pp. 757–763. MIT Press, Cambridge (1996)Google Scholar
  17. 17.
    Kung, S., Mejuto, C.: Extraction of Independent Signals from HybridMixture: KuicNet Learning Algorithm and Applications. In: Proc. Int. Conf. Acoust., Speech, Signal Processing, Seattle, WA, vol. 2, pp. 1209–1212 (1998)Google Scholar
  18. 18.
    Diamantaras, K., Kung, S.: Principal Component Neural Networks: Theory and Applications. Wiley, New York (1996)MATHGoogle Scholar
  19. 19.
    Douglas, S., Cichocki, A.: Neural Networks for Blind Decorrelation of Signals. IEEE Trans. Signal Processing 45, 2829–2842 (1997)CrossRefGoogle Scholar
  20. 20.
    Douglas, S., Amari, S.: Natural Gradient Adaptation. In: Haykin, S. (ed.) Unsupervised Adaptive Filtering: Blind Source Separation, vol. I, pp. 13–61. Wiley, New York (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Qiang Liu
    • 1
  • Tianping Chen
    • 1
  1. 1.Laboratory of Nonlinear Science, Institute of MathematicsFudan UniversityShanghaiChina

Personalised recommendations