On Kernel Discriminant Analyses Applied to Phoneme Classification

  • András Kocsor
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3497)


In this paper we recall two kernel methods for discriminant analysis. The first one is the kernel counterpart of the ubiquitous Linear Discriminant Analysis (Kernel-LDA), while the second one is a method we named Kernel Springy Discriminant Analysis (Kernel-SDA). It seeks to separate classes just as Kernel-LDA does, but by means of defining attractive and repulsive forces. First we give technical details about these methods and then we employ them on phoneme classification tasks. We demonstrate that the application of kernel functions significantly improves the recognition accuracy.


Discriminant Analysis Linear Discriminant Analysis Gaussian Mixture Model Phonological Awareness Kernel Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baudat, G., Anouar, F.: Generalized Discriminant Analysis Using a Kernel Approach. Neural Comput. 12, 2385–2404 (2000)CrossRefGoogle Scholar
  2. 2.
    Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and other kernel-based learning methods. Cambridge University Press, Cambridge (2000)Google Scholar
  3. 3.
    Daelemans, W., Zavrel, J., Sloot, K., Bosch, A.: TiMBL: Tilburg Memory Based Learner version 2.0 Reference Guide, ILK Technical Report - ILK 99-01, Computational Linguistics, Tilburg University, The Netherlands (1999)Google Scholar
  4. 4.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, NY (2001)zbMATHGoogle Scholar
  5. 5.
    Kernel Machines Web site,
  6. 6.
    Kocsor, A., et al.: A Comparative Study of Several Feature Transformation and Learning Methods for Phoneme Classification. Int. Journal of Speech Technology 3, 263–276 (2000)CrossRefzbMATHGoogle Scholar
  7. 7.
    Kocsor, A., Tóth, L., Paczolay, D.: A Nonlinearized Discriminant Analysis and Its Application to Speech Impediment Therapy. In: Matoušek, V., Mautner, P., Mouček, R., Tauser, K. (eds.) TSD 2001. LNCS (LNAI), vol. 2166, pp. 249–257. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Kocsor, A., Kovács, K.: Kernel Springy Discriminant Analysis and Its Application to a Phonological Awareness Teaching System. In: Sojka, P., Kopeček, I., Pala, K. (eds.) TSD 2002. LNCS (LNAI), vol. 2448, pp. 325–328. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Mika, S., Rätsch, G., Weston, J., Schölkopf, B., Müller, K.-R.: Fisher Discriminant Analysis with Kernels. In: Hu, Y.-H., et al. (eds.) Neural Networks for Signal Processing IX, pp. 41–48. IEEE, Los Alamitos (1999)CrossRefGoogle Scholar
  10. 10.
    Murthy, S.K., Kasif, S., Salzberg, S.: A System for Induction of Oblique Decision Trees. Journal of Artificial Intelligence Research 2, 1–32 (1994)zbMATHGoogle Scholar
  11. 11.
    Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Mateo (1993)Google Scholar
  12. 12.
    Rabiner, L., Juang, B.H.: Fundamentals of Speech Recognition. Prent. Hall, Englewood Cliffs (1993)Google Scholar
  13. 13.
    Vapnik, V.N.: Statistical Learning Theory. John Wiley & Sons Inc., Chichester (1998)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • András Kocsor
    • 1
  1. 1.Research Group on Artificial IntelligenceHungarian Academy of Sciences and University of SzegedSzegedHungary

Personalised recommendations