Exponential Stability Analysis of Neural Networks with Multiple Time Delays

  • Huaguang Zhang
  • Zhanshan Wang
  • Derong Liu
Conference paper

DOI: 10.1007/11427391_21

Part of the Lecture Notes in Computer Science book series (LNCS, volume 3496)
Cite this paper as:
Zhang H., Wang Z., Liu D. (2005) Exponential Stability Analysis of Neural Networks with Multiple Time Delays. In: Wang J., Liao X., Yi Z. (eds) Advances in Neural Networks – ISNN 2005. ISNN 2005. Lecture Notes in Computer Science, vol 3496. Springer, Berlin, Heidelberg

Abstract

Without assuming the boundedness, strict monotonicity and differentiability of the activation function, a result is established for the global exponential stability of a class of neural networks with multiple time delays. A new sufficient condition guaranteeing the uniqueness and global exponential stability of the equilibrium point is established. The new stability criterion imposes constraints, expressed by a linear matrix inequality, on the self-feedback connection matrix and interconnection matrices independent of the time delays. The stability criterion is compared with some existing results, and it is found to be less conservative than existing ones.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Huaguang Zhang
    • 1
  • Zhanshan Wang
    • 1
    • 2
  • Derong Liu
    • 3
  1. 1.Northeastern UniversityShenyangChina
  2. 2.Shenyang Ligong UniversityShenyangP.R. China
  3. 3.University of IllinoisChicagoUSA

Personalised recommendations