New Upper Bound Heuristics for Treewidth

  • Emgad H. Bachoore
  • Hans L. Bodlaender
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3503)

Abstract

In this paper, we introduce and evaluate some heuristics to find an upper bound on the treewidth of a given graph. Each of the heuristics selects the vertices of the graph one by one, building an elimination list. The heuristics differ in the criteria used for selecting vertices. These criteria depend on the fill-in of a vertex and the related new notion of the fill-in-excluding-one-neighbor. In several cases, the new heuristics improve the bounds obtained by existing heuristics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amir, E.: Efficient approximation for triangulation of minimum treewidth. In: Proceedings of the 17th Conference on Uncertainty in Artificial Intelligence, UAI 2001, Seattle, Washington, USA, pp. 7–15 (2001)Google Scholar
  2. 2.
    Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a k-tree. SIAM Journal on Algebraic and Discrete Methods 8, 277–284 (1987)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bodlaender, H.L.: Discovering treewidth. In: Vojtáš, P., Bieliková, M., Charron-Bost, B., Sýkora, O. (eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 1–16. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Bodlaender, H.L., Koster, A.M.C.A., van den Eijkhof, F., van der Graag, L.C.: Preprocessing for triangulation of probabilistic networks. In: Breese, J., Koller, D. (eds.) Proceedings of the 17th Conference on Uncertainty in Artificial Intelligence, pp. 32–39. Morgan Kaufmann Publishers, San Francisco (2001)Google Scholar
  5. 5.
    Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theoretical Computer Science 209, 1–45 (1998)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybernetica 11(1-2), 1–21 (1993)MATHMathSciNetGoogle Scholar
  7. 7.
    Clautiaux, F., Carlier, J., Moukrim, A., Negre, S.: New lower and upper bounds for graph treewidth. In: Jansen, K., Margraf, M., Mastrolli, M., Rolim, J.D.P. (eds.) WEA 2003. LNCS, vol. 2647, pp. 70–80. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Columbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, Inc., London (1980)Google Scholar
  9. 9.
    Cook, W., Seymour, P.D.: Tour Merging via branch-decomposition. Informs J. on Computing 15, 233–248 (2003)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Kornai, A., Tuza, Z.: Narrowness, pathwidth, and their application in natural language processing. Discrete Application Mathematics 36, 87–92 (1992)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Koster, A.M.C.A., Bodlaender, H.L., van Hoesel, S.: Treewidth: Computational experiments. In: Broersma, H., Faigle, U., Hurink, J., Pickl, S. (eds.) Electronic Notes in Discrete Mathematics, vol. 8. Elsevier Science Publishers, Amsterdam (2001)Google Scholar
  12. 12.
    Koster, A.M.C.A., van Hoesel, C.P.M., Kolen, A.W.J.: Solving frequency assignment problems via tree-decomposition. Technical report RM 99/011, Maastricht University (1999), Available at http://www.zib.de/koster/
  13. 13.
    Koster, A.M.C.A., van Hoesel, C.P.M., Kolen, A.W.J.: Lower bounds for minimum interference frequency assignment problems. Ricerca Operativa 30(94-95), 101–116 (2000)Google Scholar
  14. 14.
    Koster, A.M.C.A.: Frequency Assignment? Models and Algorithms. PhD thesis, Maastricht University, Maastricht, the Netherlands (1999)Google Scholar
  15. 15.
    Lauritzen, S.J., Spiegelhalter, D.J.: Local computations with probabilities on graphical structures and their application to expert systems. The Journal of the Royal Statistical Society, Series B (Methodological) 50, 157–224 (1988)MATHMathSciNetGoogle Scholar
  16. 16.
    Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM Journal on Computing 5, 266–283 (1976)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Shoikhet, K., Geiger, D.: A practical algorithm for finding optimal triangulations. In: Proceeding National conference on Artificial Intelligence (AAAI 1997), pp. 185–190. Morgan Kaufmann, San Francisco (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Emgad H. Bachoore
    • 1
  • Hans L. Bodlaender
    • 1
  1. 1.Institute of Information and Computing SciencesUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations