Context Modelling and Management in Ambient-Aware Pervasive Environments

  • Maria Strimpakou
  • Ioanna Roussaki
  • Carsten Pils
  • Michael Angermann
  • Patrick Robertson
  • Miltiades Anagnostou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3479)


Services in pervasive computing systems must evolve so that they become minimally intrusive and exhibit inherent proactiveness and dynamic adaptability to the current conditions, user preferences and environment. Con-text awareness has the potential to greatly reduce the human attention and interaction bottlenecks, to give the user the impression that services fade into the background, and to support intelligent personalization and adaptability features. To establish this functionality, an infrastructure is required to collect, manage, maintain, synchronize, infer and disseminate context information towards applications and users. This paper presents a context model and ambient context management system that have been integrated into a pervasive service platform. This research is being carried out in the DAIDALOS IST Integrated Project for pervasive environments. The final goal is to integrate the platform developed with a heterogeneous all-IP network, in order to provide intelligent pervasive services to mobile and non-mobile users based on a robust context-aware environment.


Context Information Context Modelling Inference Engine Pervasive Computing Context Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gupta, P., Moitra, D.: Evolving a pervasive IT infrastructure: a technology integration approach. Personal and Ubiquitous Computing Journal 8(1), 31–41 (2004)CrossRefGoogle Scholar
  2. 2.
    Satyanarayanan, M.: Pervasive Computing: Vision and Challenges. IEEE Personal Communications Magazine 8(4), 10–17 (2001)CrossRefGoogle Scholar
  3. 3.
    Dey, A., Salber, D., Abowd, G.: A Conceptual Framework and a Toolkit for Supporting the Rapid Prototyping of Context-Aware Applications. Human-Computer Interaction Journal 16(2-4), 97–166 (2001)CrossRefGoogle Scholar
  4. 4.
    Want, R., Hopper, A., Falcao, V., Gibbons, J.: The active badge location system. ACM Transactions on Information Systems 10(2), 91–102 (1992)CrossRefGoogle Scholar
  5. 5.
    Schilit, B., Adams, N., Want, R.: Context-Aware Computing Applications. In: Proc. of the Workshop on Mobile Computing Systems and Applications, pp. 85–90. IEEE Computer Society, Santa Cruz (1994)CrossRefGoogle Scholar
  6. 6.
    Dey, A., Abowd, G., Wood, A.: CyberDesk: A Framework for Providing Self–Integrating Context–Aware Services. Knowledge Based Systems 11(1), 3–13 (1998)CrossRefGoogle Scholar
  7. 7.
    Abowd, G.D., Atkeson, C.G., Hong, J., Long, S., Kooper, R., Pinkerton, M.: Cyberguide: A mobile context-aware tour guide. ACM Wireless Networks 3(5), 421–433 (1997)CrossRefGoogle Scholar
  8. 8.
    DeVaul, R., Pentland, A.: The Ektara Architecture: The Right Framework for Context-Aware Wearable and Ubiquitous Computing Applications. The Media Laboratory, MIT (2000)Google Scholar
  9. 9.
    Beigl, M., Gellersen, H.W., Schmidt, A.: Mediacups: Experience with design and use of computer-augmented everyday objects. Computer Networks 35(4), 401–409 (2001)CrossRefGoogle Scholar
  10. 10.
    Technology for Enabling Awareness (TEA),
  11. 11.
    Lei, H., Sow, D.M., Davis II, J.S., Banavar, G., Ebling, M.R.: The design and applications of a context service. In: ACM SIGMOBILE Mobile Computing and Communications Review, vol. 6(4), pp. 45–55 (2002)Google Scholar
  12. 12.
    Henricksen, K., Indulska, J., Rakotonirainy, A.: Modeling context information in pervasive computing systems. In: Mattern, F., Naghshineh, M. (eds.) PERVASIVE 2002. LNCS, vol. 2414, pp. 167–180. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Voida, S., Mynatt, E., MacIntyre, B., Corso, G.: Integrating virtual and physical context to support knowledge workers. IEEE Pervasive Computing 1(3), 73–79 (2002)CrossRefGoogle Scholar
  14. 14.
    Chen, G., Kotz, D.: Context-sensitive resource discovery. In: First IEEE International Conference on Pervasive Computing and Communications, pp. 243–252 (2003)Google Scholar
  15. 15.
    Garlan, D., Siewiorek, D., Smailagic, A., Steenkiste, P.: Project Aura: Towards Distraction-Free Pervasive Computing. IEEE Pervasive Computing 1(2), pp. 22–31 (2002)Google Scholar
  16. 16.
    Kanter, T.: Attaching Context-Aware Services to Moving Locations. IEEE Internet Computing 7(2), pp. 43–51 (2003)Google Scholar
  17. 17.
    Kindberg, T., Barton, J., Morgan, J., Becker, G., Caswell, D., Debaty, P., Gopal, G., Frid, M., Krishnan, V., Morris, H., Schettino, J., Serra, S.M.: People, Places, Things: Web Presence for the Real World. ACM MONET (Mobile Networks & Applications Journal) 7(5), 365–376 (2002)zbMATHCrossRefGoogle Scholar
  18. 18.
    Chen, H., Finin, T., Joshi, A.: An ontology for context-aware pervasive computing environments. Special Issue on Ontologies for Distributed Systems, Knowledge Engi-neering Review 18(3), 197–207 (2004)Google Scholar
  19. 19.
    Gu, T., Pung, H.K., Zhang, D.Q.: A Service-Oriented Middleware for Building Context-Aware Services. Journal of Network and Computer Applications (JNCA) 28(1), 1–18 (2005)CrossRefGoogle Scholar
  20. 20.
    Fahy, P., Clarke, S.: CASS: Middleware for Mobile Context-Aware Applications. In: ACM MobiSys Workshop on Context Awareness, Boston, USA (2004)Google Scholar
  21. 21.
    Biegel, G., Cahill, V.: A Framework for Developing Mobile, Context-aware Applications. In: 2nd IEEE Conference on Pervasive Computing and Communications, Orlando, FL, USA (2004)Google Scholar
  22. 22.
    Xynogalas, S., Chantzara, M., Sygkouna, I., Vrontis, S., Roussaki, I., Anagnostou, M.: Context Management for the Provision of Adaptive Services to Roaming Users. IEEE Wireless Communications 11(2), 40–47 (2004)CrossRefGoogle Scholar
  23. 23.
    Strang, T., Linnhoff-Popien, C.: A Context Modeling Survey. In: Workshop on Advanced Context Modelling. Reasoning and Management as part of UbiComp 2004 - The Sixth International Conference on 1, Nottingham/England (2004)Google Scholar
  24. 24.
    Farshchian, B., Zoric, J., Mehrmann, L., Cawsey, A., Williams, M.H., Robertson, P., Hauser, C.: Developing Pervasive Services for Future Telecommunication Networks. In: IADIS International Conference WWW/Internet, Madrid, Spain, pp. 977–982 (2004)Google Scholar
  25. 25.
    OSGi Alliance,
  26. 26.
    Simple Object Access Protocol (SOAP),
  27. 27.
    Guttman, E.: Service Location Protocol: Automatic Discovery of IP Network Services. IEEE Internet Computing 3(4), 71–80 (1999)CrossRefGoogle Scholar
  28. 28.
    Triantafillou, P., Neilson, C.: Achieving Strong Consistency in a Distributed File System. IEEE Transactions on Software Engineering 23(1), 35–55 (1997)CrossRefGoogle Scholar
  29. 29.
    Lenz, R.: Adaptive distributed data management with weak consistent replicated data. In: ACM symposium on Applied Computing, Philadelphia, USA, pp. 178–185 (1996)Google Scholar
  30. 30.
    Ciciani, B., Dias, D.M., Yu, P.S.: Analysis of Replication in Distributed Database Systems. IEEE Transactions on Knowledge and Data Engineering 2(2), 247–261 (1990)CrossRefGoogle Scholar
  31. 31.
    Wiesmann, M., Pedone, F., Schiper, A., Kemme, B., Alonso, G.: Understanding replication in databases and distributed systems. In: 20th International Conference on Distributed Computing Systems, Taipei, Taiwan, pp. 264–274 (2000)Google Scholar
  32. 32.
    Parker, D.S., Popek, G.J., Rudisin, G., Stoughton, A., Walker, B., Walton, E., Chow, J., Edwards, D., Kiser, S., Kline, C.: Detection of mutual inconsistency in distributed systems. IEEE Transactions on Software Engineering 9(3), 240–247 (1983)CrossRefGoogle Scholar
  33. 33.
    Li, K., Hudak, P.: Memory coherence in shared virtual memory systems. ACM Transactions on Computer Systems 7(4), 321–359 (1989)CrossRefGoogle Scholar
  34. 34.
    Mouly, M., Pautet, M.B.: The GSM System for Mobile Communications. Telecom Pub. (1992)Google Scholar
  35. 35.
    Holliday, J., Steinke, R., Agrawal, D., Abbadi, A.-E.: Epidemic Algorithms for Replicated Databases. IEEE Transactions on Knowledge and Data Engineering 15(5), 1218–1238 (2003)CrossRefGoogle Scholar
  36. 36.
    Ladin, R., Liskov, B., Shrira, L., Ghemawat, S.: Providing High Availability Using Lazy Replication. ACM Transactions on Computer Systems 10(4), 360–391 (1992)CrossRefGoogle Scholar
  37. 37.
    Schútt, T., Schintke, F., Reinefeld, A.: Efficient synchronization of replicated data in distributed systems. In: Sloot, P.M.A., Abramson, D., Bogdanov, A.V., Gorbachev, Y.E., Dongarra, J., Zomaya, A.Y. (eds.) ICCS 2003. LNCS, vol. 2657, pp. 274–283. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  38. 38.
    Petersen, K., Spreitzer, M.J., Terry, D.B., Theimer, M.M., Demers, A.J.: Flexible Update Propagation for Weakly Consistent Replication. In: 16th ACM Symposium on Operating Systems Principles, Saint-Malo, France, pp. 288–301 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Maria Strimpakou
    • 1
  • Ioanna Roussaki
    • 1
  • Carsten Pils
    • 2
  • Michael Angermann
    • 3
  • Patrick Robertson
    • 3
  • Miltiades Anagnostou
    • 1
  1. 1.School of Electrical and Computer EngineeringNational Technical University of AthensAthensGreece
  2. 2.Department of Computer Science 4AachenGermany
  3. 3.Institute of Communications and NavigationGerman Aerospace CenterWessling/OberpfaffenhofenGermany

Personalised recommendations