Commonsense Spatial Reasoning for Context–Aware Pervasive Systems

  • Stefania Bandini
  • Alessandro Mosca
  • Matteo Palmonari
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3479)


A major issue in Pervasive Computing in order to design and implement context–aware applications is to correlate information provided by distributed devices to furnish a more comprehensive view of the context they habit. Such a correlation activity requires considering a spatial model of this environment, even if the kind of information processed is not only of spatial nature. This paper focuses on the notions of place and conceptual spatial relation to present a commonsense formal model of space supporting reasoning about meaningful correlation. The model consists of a relational structure that can be viewed as the semantic specification for a hybrid logic language, whose formulas represent contextual information and whose satisfiability procedures enhance reasoning, allowing the local perspective typical of many approach to context–awareness.


Modal Logic Pervasive Computing Proximity Relation Hybrid Logic Meaningful Correlation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zambonelli, F., Parunak, H.: Signs of a revolution in computer science and software engineering. In: Petta, P., Tolksdorf, R., Zambonelli, F. (eds.) ESAW 2002. LNCS (LNAI), vol. 2577, pp. 13–28. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Bandini, S., Mosca, A., Palmonari, M., Sartori, F.: A conceptual framework for monitoring and control system development. In: Baresi, L., Dustdar, S., Gall, H.C., Matera, M. (eds.) UMICS 2004. LNCS, vol. 3272, pp. 111–124. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Joshi, A., Finin, T., Yesha, Y.: Me-services: A framework for secure & personalized discovery, composition and management of services in pervasive environments. In: Bussler, C.J., McIlraith, S.A., Orlowska, M.E., Pernici, B., Yang, J. (eds.) CAiSE 2002 and WES 2002. LNCS, vol. 2512, pp. 248–259. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Davis, E.: Representations of commonsense knowledge. Morgan Kaufmann Publishers, San Francisco (1990)Google Scholar
  5. 5.
    Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection. In: Proc. 3rd Int. Conf. on Knowledge Representation and Reasoning, San Mateo, CA, pp. 165–176. Morgan Kaufmann, San Francisco (1992)Google Scholar
  6. 6.
    Aiello, M., Benthem, J.V.: A modal walk trough space. Journal of Applied Non-Classical Logics 12, 319–363 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Kuipers, B.: Modelling spatial knowledge. Cognitive Science 2, 129–154 (1978)CrossRefGoogle Scholar
  8. 8.
    Leisler, D., Zilbershatz, A.: The traveller: A computational model of spatial network learning. Environment and Behaviour 21, 435–463 (1989)CrossRefGoogle Scholar
  9. 9.
    Gopal, S., Klatzky, R., Smith, T.: Navigator: A psychologically based model of environmental learning through navigation. Journal of Environmental Psychology 9, 309–331 (1989)CrossRefGoogle Scholar
  10. 10.
    Bandini, S., Bogni, D., Manzoni, S., Mosca, A.: A ST-modal logic approach to alarm correlation in monitoring and control of italian highways traffic. In: Ali, M., Esposito, F. (eds.) IEA/AIE 2005. LNCS (LNAI), vol. 3533, pp. 819–828. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Harary, F.: Graph Theory. Addison-Wesley, Reading (1972)Google Scholar
  12. 12.
    Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press, Cambridge (2000)Google Scholar
  13. 13.
    Blackburn, P.: Representation, reasoning and realtional structures: a hybrid logic manifesto. Logic Journal of the IGPL 8, 339–365 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Bandini, S., Bogni, D., Manzoni, S.: Alarm correlation in traffic monitoring and control systems: a knowledge-based approach. In: van Harmelen, F. (ed.) Proceedings of the 15th European Conference on Artificial Intelligence, Lyon (F), Amsterdam, July 21-26, pp. 638–642. IOS Press, Amsterdam (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Stefania Bandini
    • 1
  • Alessandro Mosca
    • 1
  • Matteo Palmonari
    • 1
  1. 1.Department of Computer Science, Systems and Communication (DISCo)University of Milan – Bicocca 

Personalised recommendations