Advertisement

Related-Key Boomerang and Rectangle Attacks

  • Eli Biham
  • Orr Dunkelman
  • Nathan Keller
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3494)

Abstract

The boomerang attack and the rectangle attack are two attacks that utilize differential cryptanalysis in a larger construction. Both attacks treat the cipher as a cascade of two sub-ciphers, where there exists a good differential for each sub-cipher, but not for the entire cipher. In this paper we combine the boomerang (and the rectangle) attack with related-key differentials.

The new combination is applicable to many ciphers, and we demonstrate its strength by introducing attacks on reduced-round versions of AES and IDEA. The attack on 192-bit key 9-round AES uses 256 different related keys. The 6.5-round attack on IDEA uses four related keys (and has time complexity of 288.1 encryptions). We also apply these techniques to COCONUT98 to obtain a distinguisher that requires only four related-key adaptive chosen plaintexts and ciphertexts. For these ciphers, our results attack larger number of rounds or have smaller complexities then all previously known attacks.

Keywords

Time Complexity Block Cipher Angle Attack Choose Plaintext Attack Fast Software Encryption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Biham, E.: New Types of Cryptanalytic Attacks Using Related Keys. Journal of Cryptology 7(4), 229–246 (1994)zbMATHCrossRefGoogle Scholar
  2. 2.
    Biham, E., Biryukov, A., Shamir, A.: Miss in the Middle Attacks on IDEA and Khufu. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 124–138. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. 3.
    Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack Reduced to 31 Rounds. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 12–23. Springer, Heidelberg (1999)Google Scholar
  4. 4.
    Biham, E., Dunkelman, O., Keller, N.: The Rectangle Attack – Rectangling the Serpent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 340–357. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Biham, E., Dunkelman, O., Keller, N.: New Results on Boomerang and Rectangle Attacks. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 1–16. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard. Springer, Heidelberg (1993)zbMATHGoogle Scholar
  7. 7.
    Biryukov, A.: The Boomerang Attack on 5 and 6-round AES. In: Preproceedings of Advanced Encryption Standard 4, available on-line at http://www.esat.kuleuven.ac.be/~abiryuko/
  8. 8.
    Biryukov, A., Nakahara Jr., J., Preneel, B., Vandewalle, J.: New Weak-Key Classes of IDEA. In: Deng, R.H., Qing, S., Bao, F., Zhou, J. (eds.) ICICS 2002. LNCS, vol. 2513, pp. 315–326. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Biryukov, A., Wagner, D.: Slide Attacks. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 245–259. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
    Borst, J., Knudsen, L.R., Rijmen, V.: Two Attacks on Reduced Round IDEA. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 1–13. Springer, Heidelberg (1997)Google Scholar
  11. 11.
    Daemen, J., Knudsen, L.R., Rijmen, V.: The Block Cipher Square. In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  12. 12.
    Daemen, J., Rijmen, V.: The design of Rijndael: AES — the Advanced Encryption Standard. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  13. 13.
    Demirci, H., Selçuk, A.A., Türe, E.: A New Meet-in-the-Middle Attack on the IDEA Block Cipher. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 117–129. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D., Whiting, D.: Improved Cryptanalysis of Rijndael. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 213–230. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Hawkes, P.: Differential-Linear Weak Keys Classes of IDEA. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 112–126. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  16. 16.
    Hong, S., Kim, J., Kim, G., Lee, S., Preneel, B.: Related-Key Rectangle Attacks on Reduced Versions of SHACAL-1 and AES-192. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 368–383. Springer, Heidelberg (2005) (to appear)CrossRefGoogle Scholar
  17. 17.
    Jakimoski, G., Desmedt, Y.: Related-Key Differential Cryptanalysis of 192-bit Key AES Variants. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 208–221. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Kelsey, J., Kohno, T., Schneier, B.: Amplified Boomerang Attacks Against Reduced-Round MARS and Serpent. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 75–93. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  19. 19.
    Kelsey, J., Schneier, B., Wagner, D.: Related-Key Cryptanalysis of 3-WAY, Biham-DES, CAST, DES-X, NewDES, RC2, and TEA. In: Han, Y., Quing, S. (eds.) ICICS 1997. LNCS, vol. 1334, pp. 233–246. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  20. 20.
    Kim, J., Kim, G., Hong, S., Hong, D.: The Related-Key Rectangle Attack — Application to SHACAL-1. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 123–136. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  21. 21.
    Lai, X., Massey, J.L.: A Proposal for a New Block Cipher Encryption Standard. In: Damgård, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 389–404. Springer, Heidelberg (1991)Google Scholar
  22. 22.
    Vaudenay, S.: Provable Security for Block Ciphers by Decorrelation. In: Meinel, C., Morvan, M. (eds.) STACS 1998. LNCS, vol. 1373, pp. 249–275. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  23. 23.
    Wagner, D.: The Boomerang Attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 156–170. Springer, Heidelberg (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Eli Biham
    • 1
  • Orr Dunkelman
    • 1
  • Nathan Keller
    • 2
  1. 1.Computer Science DepartmentTechnionHaifaIsrael
  2. 2.Einstein Institute of MathematicsHebrew UniversityJerusalemIsrael

Personalised recommendations