Approximate Quantum Error-Correcting Codes and Secret Sharing Schemes

  • Claude Crépeau
  • Daniel Gottesman
  • Adam Smith
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3494)

Abstract

It is a standard result in the theory of quantum error- correcting codes that no code of length n can fix more than n/4 arbitrary errors, regardless of the dimension of the coding and encoded Hilbert spaces. However, this bound only applies to codes which recover the message exactly. Naively, one might expect that correcting errors to very high fidelity would only allow small violations of this bound. This intuition is incorrect: in this paper we describe quantum error-correcting codes capable of correcting up to \(\lfloor(n - 1)/2\rfloor\) arbitrary errors with fidelity exponentially close to 1, at the price of increasing the size of the registers (i.e., the coding alphabet). This demonstrates a sharp distinction between exact and approximate quantum error correction. The codes have the property that any t components reveal no information about the message, and so they can also be viewed as error-tolerant secret sharing schemes.

The construction has several interesting implications for cryptography and quantum information theory. First, it suggests that secret sharing is a better classical analogue to quantum error correction than is classical error correction. Second, it highlights an error in a purported proof that verifiable quantum secret sharing (VQSS) is impossible when the number of cheaters t is n/4. In particular, the construction directly yields an honest-dealer VQSS scheme for \(t= \lfloor(n - 1)/2\rfloor\). We believe the codes could also potentially lead to improved protocols for dishonest-dealer VQSS and secure multi-party quantum computation.

More generally, the construction illustrates a difference between exact and approximate requirements in quantum cryptography and (yet again) the delicacy of security proofs and impossibility results in the quantum model.

References

  1. 1.
    Aharonov, D., Ben-Or, M.: Fault tolerant quantum computation with constant error rate. Submitted to SIAM J. Comp. (June 1999) (Preliminary version in STOC 29th 1997)Google Scholar
  2. 2.
    Barnum, H., Crépeau, C., Gottesman, D., Tapp, A., Smith, A.: Authentication of quantum messages. In: Proceedings of The 43rd Annual IEEE Symposium on Foundations of Computer Science (FOCS 2002), Vancouver, BC, Canada, November 16 - 19, pp. 449–458 (2002); Also Quantum Physics, abstract quant-ph/0205128, p. 22 (May 2002)Google Scholar
  3. 3.
    Barnum, H., Knill, E., Nielsen, M.A.: On Quantum Fidelities and Channel Capacities, quant-ph/980901. IEEE Trans.Info.Theor. 46, 1317–1329 (2000)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of Noisy Entanglement and Faithful Teleportation via Noisy Channels. Phys. Rev. Lett. 76, 722–725 (1996); Quantum Physics, abstract quant-ph/9511027CrossRefGoogle Scholar
  5. 5.
    Cabello, S., Padró, C., Saéz, G.: Secret Sharing Schemes with Detection of Cheaters for a General Access Structure. Designs, Codes and Cryptography 25(2), 175–188 (2002)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Cleve, R., Gottesman, D., Lo, H.-K.: How to share a quantum secret. Phys.Rev.Lett. 83, 648–651 (1999)CrossRefGoogle Scholar
  7. 7.
    Cramer, R., Damgård, I., Dziembowski, S., Hirt, M., Rabin, T.: Efficient Multiparty Computations Secure Against an Adaptive Adversary. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, p. 311. Springer, Heidelberg (1999)Google Scholar
  8. 8.
    Cramer, R., Damgård, I., Fehr, S.: On the Cost of Reconstructing a Secret. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, p. 503. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Crépeau, C., Gottesman, D., Smith, A.: Secure multi-party quantum computation. In: Proceedings of 34th Annual ACM Symposium on Theory of Computing, Montréal, Québec, Canada, May 19-21, pp. 643–652. ACM Press, New York (2002)Google Scholar
  10. 10.
    Gemmell, P., Naor, M.: Codes for interactive authentication. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 355–367. Springer, Heidelberg (1994)Google Scholar
  11. 11.
    Gottesman, D.: An Introduction to Quantum Error Correction., Quantum Physics, abstract quant-ph/0004072, 15 pages, talk given at AMS Short Course on Quantum ComputationGoogle Scholar
  12. 12.
    Hayden, P., Leung, D., Mayers, D.: Universally composable quantum authentication (in preparation)Google Scholar
  13. 13.
    Hayden, P., Leung, D., Winter, A., Shor, P.: Randomizing quantum states: Constructions and applications. Commun. Math. Phys. 250(2), 371–391 (2004)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Lo, H.-K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283(5410), 2050–2056 (1999)CrossRefGoogle Scholar
  15. 15.
    Leung, D.W., Nielsen, M.A., Chuang, I.L., Yamamoto, Y.: Approximate quantum error correction can lead to better codes. Phys.Rev. A56, 2567–2573 (1997); quant-ph/9704002 Google Scholar
  16. 16.
    McEliece, R.J., Sarwate, D.: On sharing secrets and Reed-Solomon codes. Comm. ACM 24, 583–584 (1981)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  18. 18.
    Oppenheim, J., Horodecki, M.: How to reuse a one-time pad and other notes on authentication, encryption and protection of quantum information. E-print quant-ph/0306161Google Scholar
  19. 19.
    Rabin, T., Ben-Or, M.: Verifiable Secret Sharing and Multiparty Protocols with Honest Majority. In: Proc. of STOC 1989, pp. 73–85 (1989)Google Scholar
  20. 20.
    Shamir, A.: How to share a secret. Communications of the ACM 22, 612–613 (1979)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Schumacher, B., Westmoreland, M.D.: Approximate quantum error correction. E-print quant-ph/0112106 (2001)Google Scholar
  22. 22.
    Smith, A.: Quantum secret sharing for general access structures. E-print quant-ph/0001087 (2000)Google Scholar
  23. 23.
    Srinathan, K., Narayanan, A., Pandu Rangan, C.: Optimal Perfectly Secure Message Transmission. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 545–561. Springer, Heidelberg (2004)Google Scholar
  24. 24.
    Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802 (1982)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Claude Crépeau
    • 1
  • Daniel Gottesman
    • 2
  • Adam Smith
    • 3
  1. 1.McGill UniversityMontréalCanada
  2. 2.Perimeter InstituteWaterlooCanada
  3. 3.Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations