Comparison of Global Optimization Methods for Drag Reduction in the Automotive Industry

  • Laurent Dumas
  • Vincent Herbert
  • Frédérique Muyl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3483)

Abstract

Various global optimization methods are compared in order to find the best strategy to solve realistic drag reduction problems in the automotive industry. All the methods consist in improving classical genetic algorithms, either by coupling them with a deterministic descent method or by incorporating a fast but approximated evaluation process. The efficiency of these methods (called HM and AGA respectively) is shown and compared, first on analytical test functions, then on a drag reduction problem where the computational time of a GA is reduced by a factor up to 7.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Muyl, F., Dumas, L., Herbert, V.: Hybrid method for aerodynamic shape optimization in automotive industry. Computers and Fluids 33, 849–858 (2004)MATHCrossRefGoogle Scholar
  2. 2.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)MATHGoogle Scholar
  3. 3.
    Poloni, C.: Hybrid GA for multi objective aerodynamic shape optimization. In: Genetic algorithms in engineering and computer science, vol. 33, pp. 397–415. John Wiley and Sons, Chichester (1995)Google Scholar
  4. 4.
    Renders, J.M., Flasse, S.P.: Hybrid methods using genetic algorithms for global optimization. IEEE Transactions on systems, man and cybernetics 26, 243–258 (1996)CrossRefGoogle Scholar
  5. 5.
    Vicini, A., Quagliarella, D.: Airfoil and wing design through hybrid optimization strategies. AIAA paper (1998)Google Scholar
  6. 6.
    Ong, Y.S., Nair, P.B., Keane, A.J., Wong, K.W.: Surrogate-Assisted Evolutionary Optimization Frameworks for High-Fidelity Engineering Design Problems. In: Knowledge Incorporation in Evolutionary Computation. Studies in Fuzziness and Soft Computing Series, pp. 307–331. Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Jin, Y.: A survey on fitness approximation in evolutionary computation. Journal of Soft Computing 9, 3–12 (2005)CrossRefGoogle Scholar
  8. 8.
    Jin, Y., Olhofer, M., Sendhoff, B.: A framework for evolutionary optimization with approximate fitness functions. IEEE Transactions on Evolutionary Computation 6, 481–494 (2002)CrossRefGoogle Scholar
  9. 9.
    Ong, Y.S., Nair, P.B., Keane, A.J.: Evolutionary Optimization of Computationally Expensive Problems via Surrogate Modeling. AIAA Journal 41, 687–696 (2003)CrossRefGoogle Scholar
  10. 10.
    Giannakoglou, K.C.: Acceleration of GA using neural networks, theoretical background. GA for optimization in aeronautics and turbomachinery. VKI Lecture Series (2000)Google Scholar
  11. 11.
    Muyl, F.: Méthode d’optimisation hybrides: application à l’optimisation de formes arodynamiques automobiles. Phd thesis Université Paris 6 (2003)Google Scholar
  12. 12.
    Sagi, C.J., Han, T., Hammond, D.C.: Optimization of bluff body for minimum drag in ground proximity. AIAA paper (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Laurent Dumas
    • 1
  • Vincent Herbert
    • 1
  • Frédérique Muyl
    • 2
  1. 1.Laboratoire Jacques-Louis LionsUniversité Pierre et Marie CurieParis Cedex 05France
  2. 2.PSA Peugeot CitroënVélizy VillacoublayFrance

Personalised recommendations